|
- // https://d3js.org/d3-geo-projection/ v4.0.0 Copyright 2013-2021 Mike Bostock, 2015 Ricky Reusser
- (function (global, factory) {
- typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports, require('d3-geo'), require('d3-array')) :
- typeof define === 'function' && define.amd ? define(['exports', 'd3-geo', 'd3-array'], factory) :
- (global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global.d3 = global.d3 || {}, global.d3, global.d3));
- }(this, (function (exports, d3Geo, d3Array) { 'use strict';
-
- var abs = Math.abs;
- var atan = Math.atan;
- var atan2 = Math.atan2;
- var cos = Math.cos;
- var exp = Math.exp;
- var floor = Math.floor;
- var log = Math.log;
- var max = Math.max;
- var min = Math.min;
- var pow = Math.pow;
- var round = Math.round;
- var sign = Math.sign || function(x) { return x > 0 ? 1 : x < 0 ? -1 : 0; };
- var sin = Math.sin;
- var tan = Math.tan;
-
- var epsilon$1 = 1e-6;
- var epsilon2 = 1e-12;
- var pi = Math.PI;
- var halfPi = pi / 2;
- var quarterPi = pi / 4;
- var sqrt1_2 = Math.SQRT1_2;
- var sqrt2 = sqrt(2);
- var sqrtPi = sqrt(pi);
- var tau = pi * 2;
- var degrees = 180 / pi;
- var radians = pi / 180;
-
- function sinci(x) {
- return x ? x / Math.sin(x) : 1;
- }
-
- function asin(x) {
- return x > 1 ? halfPi : x < -1 ? -halfPi : Math.asin(x);
- }
-
- function acos(x) {
- return x > 1 ? 0 : x < -1 ? pi : Math.acos(x);
- }
-
- function sqrt(x) {
- return x > 0 ? Math.sqrt(x) : 0;
- }
-
- function tanh(x) {
- x = exp(2 * x);
- return (x - 1) / (x + 1);
- }
-
- function sinh(x) {
- return (exp(x) - exp(-x)) / 2;
- }
-
- function cosh(x) {
- return (exp(x) + exp(-x)) / 2;
- }
-
- function arsinh(x) {
- return log(x + sqrt(x * x + 1));
- }
-
- function arcosh(x) {
- return log(x + sqrt(x * x - 1));
- }
-
- function airyRaw(beta) {
- var tanBeta_2 = tan(beta / 2),
- b = 2 * log(cos(beta / 2)) / (tanBeta_2 * tanBeta_2);
-
- function forward(x, y) {
- var cosx = cos(x),
- cosy = cos(y),
- siny = sin(y),
- cosz = cosy * cosx,
- k = -((1 - cosz ? log((1 + cosz) / 2) / (1 - cosz) : -0.5) + b / (1 + cosz));
- return [k * cosy * sin(x), k * siny];
- }
-
- forward.invert = function(x, y) {
- var r = sqrt(x * x + y * y),
- z = -beta / 2,
- i = 50, delta;
- if (!r) return [0, 0];
- do {
- var z_2 = z / 2,
- cosz_2 = cos(z_2),
- sinz_2 = sin(z_2),
- tanz_2 = sinz_2 / cosz_2,
- lnsecz_2 = -log(abs(cosz_2));
- z -= delta = (2 / tanz_2 * lnsecz_2 - b * tanz_2 - r) / (-lnsecz_2 / (sinz_2 * sinz_2) + 1 - b / (2 * cosz_2 * cosz_2)) * (cosz_2 < 0 ? 0.7 : 1);
- } while (abs(delta) > epsilon$1 && --i > 0);
- var sinz = sin(z);
- return [atan2(x * sinz, r * cos(z)), asin(y * sinz / r)];
- };
-
- return forward;
- }
-
- function airy() {
- var beta = halfPi,
- m = d3Geo.geoProjectionMutator(airyRaw),
- p = m(beta);
-
- p.radius = function(_) {
- return arguments.length ? m(beta = _ * radians) : beta * degrees;
- };
-
- return p
- .scale(179.976)
- .clipAngle(147);
- }
-
- function aitoffRaw(x, y) {
- var cosy = cos(y), sincia = sinci(acos(cosy * cos(x /= 2)));
- return [2 * cosy * sin(x) * sincia, sin(y) * sincia];
- }
-
- // Abort if [x, y] is not within an ellipse centered at [0, 0] with
- // semi-major axis pi and semi-minor axis pi/2.
- aitoffRaw.invert = function(x, y) {
- if (x * x + 4 * y * y > pi * pi + epsilon$1) return;
- var x1 = x, y1 = y, i = 25;
- do {
- var sinx = sin(x1),
- sinx_2 = sin(x1 / 2),
- cosx_2 = cos(x1 / 2),
- siny = sin(y1),
- cosy = cos(y1),
- sin_2y = sin(2 * y1),
- sin2y = siny * siny,
- cos2y = cosy * cosy,
- sin2x_2 = sinx_2 * sinx_2,
- c = 1 - cos2y * cosx_2 * cosx_2,
- e = c ? acos(cosy * cosx_2) * sqrt(f = 1 / c) : f = 0,
- f,
- fx = 2 * e * cosy * sinx_2 - x,
- fy = e * siny - y,
- dxdx = f * (cos2y * sin2x_2 + e * cosy * cosx_2 * sin2y),
- dxdy = f * (0.5 * sinx * sin_2y - e * 2 * siny * sinx_2),
- dydx = f * 0.25 * (sin_2y * sinx_2 - e * siny * cos2y * sinx),
- dydy = f * (sin2y * cosx_2 + e * sin2x_2 * cosy),
- z = dxdy * dydx - dydy * dxdx;
- if (!z) break;
- var dx = (fy * dxdy - fx * dydy) / z,
- dy = (fx * dydx - fy * dxdx) / z;
- x1 -= dx, y1 -= dy;
- } while ((abs(dx) > epsilon$1 || abs(dy) > epsilon$1) && --i > 0);
- return [x1, y1];
- };
-
- function aitoff() {
- return d3Geo.geoProjection(aitoffRaw)
- .scale(152.63);
- }
-
- function armadilloRaw(phi0) {
- var sinPhi0 = sin(phi0),
- cosPhi0 = cos(phi0),
- sPhi0 = phi0 >= 0 ? 1 : -1,
- tanPhi0 = tan(sPhi0 * phi0),
- k = (1 + sinPhi0 - cosPhi0) / 2;
-
- function forward(lambda, phi) {
- var cosPhi = cos(phi),
- cosLambda = cos(lambda /= 2);
- return [
- (1 + cosPhi) * sin(lambda),
- (sPhi0 * phi > -atan2(cosLambda, tanPhi0) - 1e-3 ? 0 : -sPhi0 * 10) + k + sin(phi) * cosPhi0 - (1 + cosPhi) * sinPhi0 * cosLambda // TODO D3 core should allow null or [NaN, NaN] to be returned.
- ];
- }
-
- forward.invert = function(x, y) {
- var lambda = 0,
- phi = 0,
- i = 50;
- do {
- var cosLambda = cos(lambda),
- sinLambda = sin(lambda),
- cosPhi = cos(phi),
- sinPhi = sin(phi),
- A = 1 + cosPhi,
- fx = A * sinLambda - x,
- fy = k + sinPhi * cosPhi0 - A * sinPhi0 * cosLambda - y,
- dxdLambda = A * cosLambda / 2,
- dxdPhi = -sinLambda * sinPhi,
- dydLambda = sinPhi0 * A * sinLambda / 2,
- dydPhi = cosPhi0 * cosPhi + sinPhi0 * cosLambda * sinPhi,
- denominator = dxdPhi * dydLambda - dydPhi * dxdLambda,
- dLambda = (fy * dxdPhi - fx * dydPhi) / denominator / 2,
- dPhi = (fx * dydLambda - fy * dxdLambda) / denominator;
- if (abs(dPhi) > 2) dPhi /= 2;
- lambda -= dLambda, phi -= dPhi;
- } while ((abs(dLambda) > epsilon$1 || abs(dPhi) > epsilon$1) && --i > 0);
- return sPhi0 * phi > -atan2(cos(lambda), tanPhi0) - 1e-3 ? [lambda * 2, phi] : null;
- };
-
- return forward;
- }
-
- function armadillo() {
- var phi0 = 20 * radians,
- sPhi0 = phi0 >= 0 ? 1 : -1,
- tanPhi0 = tan(sPhi0 * phi0),
- m = d3Geo.geoProjectionMutator(armadilloRaw),
- p = m(phi0),
- stream_ = p.stream;
-
- p.parallel = function(_) {
- if (!arguments.length) return phi0 * degrees;
- tanPhi0 = tan((sPhi0 = (phi0 = _ * radians) >= 0 ? 1 : -1) * phi0);
- return m(phi0);
- };
-
- p.stream = function(stream) {
- var rotate = p.rotate(),
- rotateStream = stream_(stream),
- sphereStream = (p.rotate([0, 0]), stream_(stream)),
- precision = p.precision();
- p.rotate(rotate);
- rotateStream.sphere = function() {
- sphereStream.polygonStart(), sphereStream.lineStart();
- for (var lambda = sPhi0 * -180; sPhi0 * lambda < 180; lambda += sPhi0 * 90)
- sphereStream.point(lambda, sPhi0 * 90);
- if (phi0) while (sPhi0 * (lambda -= 3 * sPhi0 * precision) >= -180) {
- sphereStream.point(lambda, sPhi0 * -atan2(cos(lambda * radians / 2), tanPhi0) * degrees);
- }
- sphereStream.lineEnd(), sphereStream.polygonEnd();
- };
- return rotateStream;
- };
-
- return p
- .scale(218.695)
- .center([0, 28.0974]);
- }
-
- function augustRaw(lambda, phi) {
- var tanPhi = tan(phi / 2),
- k = sqrt(1 - tanPhi * tanPhi),
- c = 1 + k * cos(lambda /= 2),
- x = sin(lambda) * k / c,
- y = tanPhi / c,
- x2 = x * x,
- y2 = y * y;
- return [
- 4 / 3 * x * (3 + x2 - 3 * y2),
- 4 / 3 * y * (3 + 3 * x2 - y2)
- ];
- }
-
- augustRaw.invert = function(x, y) {
- x *= 3 / 8, y *= 3 / 8;
- if (!x && abs(y) > 1) return null;
- var x2 = x * x,
- y2 = y * y,
- s = 1 + x2 + y2,
- sin3Eta = sqrt((s - sqrt(s * s - 4 * y * y)) / 2),
- eta = asin(sin3Eta) / 3,
- xi = sin3Eta ? arcosh(abs(y / sin3Eta)) / 3 : arsinh(abs(x)) / 3,
- cosEta = cos(eta),
- coshXi = cosh(xi),
- d = coshXi * coshXi - cosEta * cosEta;
- return [
- sign(x) * 2 * atan2(sinh(xi) * cosEta, 0.25 - d),
- sign(y) * 2 * atan2(coshXi * sin(eta), 0.25 + d)
- ];
- };
-
- function august() {
- return d3Geo.geoProjection(augustRaw)
- .scale(66.1603);
- }
-
- var sqrt8 = sqrt(8),
- phi0 = log(1 + sqrt2);
-
- function bakerRaw(lambda, phi) {
- var phi0 = abs(phi);
- return phi0 < quarterPi
- ? [lambda, log(tan(quarterPi + phi / 2))]
- : [lambda * cos(phi0) * (2 * sqrt2 - 1 / sin(phi0)), sign(phi) * (2 * sqrt2 * (phi0 - quarterPi) - log(tan(phi0 / 2)))];
- }
-
- bakerRaw.invert = function(x, y) {
- if ((y0 = abs(y)) < phi0) return [x, 2 * atan(exp(y)) - halfPi];
- var phi = quarterPi, i = 25, delta, y0;
- do {
- var cosPhi_2 = cos(phi / 2), tanPhi_2 = tan(phi / 2);
- phi -= delta = (sqrt8 * (phi - quarterPi) - log(tanPhi_2) - y0) / (sqrt8 - cosPhi_2 * cosPhi_2 / (2 * tanPhi_2));
- } while (abs(delta) > epsilon2 && --i > 0);
- return [x / (cos(phi) * (sqrt8 - 1 / sin(phi))), sign(y) * phi];
- };
-
- function baker() {
- return d3Geo.geoProjection(bakerRaw)
- .scale(112.314);
- }
-
- function berghausRaw(lobes) {
- var k = 2 * pi / lobes;
-
- function forward(lambda, phi) {
- var p = d3Geo.geoAzimuthalEquidistantRaw(lambda, phi);
- if (abs(lambda) > halfPi) { // back hemisphere
- var theta = atan2(p[1], p[0]),
- r = sqrt(p[0] * p[0] + p[1] * p[1]),
- theta0 = k * round((theta - halfPi) / k) + halfPi,
- alpha = atan2(sin(theta -= theta0), 2 - cos(theta)); // angle relative to lobe end
- theta = theta0 + asin(pi / r * sin(alpha)) - alpha;
- p[0] = r * cos(theta);
- p[1] = r * sin(theta);
- }
- return p;
- }
-
- forward.invert = function(x, y) {
- var r = sqrt(x * x + y * y);
- if (r > halfPi) {
- var theta = atan2(y, x),
- theta0 = k * round((theta - halfPi) / k) + halfPi,
- s = theta > theta0 ? -1 : 1,
- A = r * cos(theta0 - theta),
- cotAlpha = 1 / tan(s * acos((A - pi) / sqrt(pi * (pi - 2 * A) + r * r)));
- theta = theta0 + 2 * atan((cotAlpha + s * sqrt(cotAlpha * cotAlpha - 3)) / 3);
- x = r * cos(theta), y = r * sin(theta);
- }
- return d3Geo.geoAzimuthalEquidistantRaw.invert(x, y);
- };
-
- return forward;
- }
-
- function berghaus() {
- var lobes = 5,
- m = d3Geo.geoProjectionMutator(berghausRaw),
- p = m(lobes),
- projectionStream = p.stream,
- epsilon = 1e-2,
- cr = -cos(epsilon * radians),
- sr = sin(epsilon * radians);
-
- p.lobes = function(_) {
- return arguments.length ? m(lobes = +_) : lobes;
- };
-
- p.stream = function(stream) {
- var rotate = p.rotate(),
- rotateStream = projectionStream(stream),
- sphereStream = (p.rotate([0, 0]), projectionStream(stream));
- p.rotate(rotate);
- rotateStream.sphere = function() {
- sphereStream.polygonStart(), sphereStream.lineStart();
- for (var i = 0, delta = 360 / lobes, delta0 = 2 * pi / lobes, phi = 90 - 180 / lobes, phi0 = halfPi; i < lobes; ++i, phi -= delta, phi0 -= delta0) {
- sphereStream.point(atan2(sr * cos(phi0), cr) * degrees, asin(sr * sin(phi0)) * degrees);
- if (phi < -90) {
- sphereStream.point(-90, -180 - phi - epsilon);
- sphereStream.point(-90, -180 - phi + epsilon);
- } else {
- sphereStream.point(90, phi + epsilon);
- sphereStream.point(90, phi - epsilon);
- }
- }
- sphereStream.lineEnd(), sphereStream.polygonEnd();
- };
- return rotateStream;
- };
-
- return p
- .scale(87.8076)
- .center([0, 17.1875])
- .clipAngle(180 - 1e-3);
- }
-
- function hammerRaw(A, B) {
- if (arguments.length < 2) B = A;
- if (B === 1) return d3Geo.geoAzimuthalEqualAreaRaw;
- if (B === Infinity) return hammerQuarticAuthalicRaw;
-
- function forward(lambda, phi) {
- var coordinates = d3Geo.geoAzimuthalEqualAreaRaw(lambda / B, phi);
- coordinates[0] *= A;
- return coordinates;
- }
-
- forward.invert = function(x, y) {
- var coordinates = d3Geo.geoAzimuthalEqualAreaRaw.invert(x / A, y);
- coordinates[0] *= B;
- return coordinates;
- };
-
- return forward;
- }
-
- function hammerQuarticAuthalicRaw(lambda, phi) {
- return [
- lambda * cos(phi) / cos(phi /= 2),
- 2 * sin(phi)
- ];
- }
-
- hammerQuarticAuthalicRaw.invert = function(x, y) {
- var phi = 2 * asin(y / 2);
- return [
- x * cos(phi / 2) / cos(phi),
- phi
- ];
- };
-
- function hammer() {
- var B = 2,
- m = d3Geo.geoProjectionMutator(hammerRaw),
- p = m(B);
-
- p.coefficient = function(_) {
- if (!arguments.length) return B;
- return m(B = +_);
- };
-
- return p
- .scale(169.529);
- }
-
- // Approximate Newton-Raphson
- // Solve f(x) = y, start from x
- function solve(f, y, x) {
- var steps = 100, delta, f0, f1;
- x = x === undefined ? 0 : +x;
- y = +y;
- do {
- f0 = f(x);
- f1 = f(x + epsilon$1);
- if (f0 === f1) f1 = f0 + epsilon$1;
- x -= delta = (-1 * epsilon$1 * (f0 - y)) / (f0 - f1);
- } while (steps-- > 0 && abs(delta) > epsilon$1);
- return steps < 0 ? NaN : x;
- }
-
- // Approximate Newton-Raphson in 2D
- // Solve f(a,b) = [x,y]
- function solve2d(f, MAX_ITERATIONS, eps) {
- if (MAX_ITERATIONS === undefined) MAX_ITERATIONS = 40;
- if (eps === undefined) eps = epsilon2;
- return function(x, y, a, b) {
- var err2, da, db;
- a = a === undefined ? 0 : +a;
- b = b === undefined ? 0 : +b;
- for (var i = 0; i < MAX_ITERATIONS; i++) {
- var p = f(a, b),
- // diffs
- tx = p[0] - x,
- ty = p[1] - y;
- if (abs(tx) < eps && abs(ty) < eps) break; // we're there!
-
- // backtrack if we overshot
- var h = tx * tx + ty * ty;
- if (h > err2) {
- a -= da /= 2;
- b -= db /= 2;
- continue;
- }
- err2 = h;
-
- // partial derivatives
- var ea = (a > 0 ? -1 : 1) * eps,
- eb = (b > 0 ? -1 : 1) * eps,
- pa = f(a + ea, b),
- pb = f(a, b + eb),
- dxa = (pa[0] - p[0]) / ea,
- dya = (pa[1] - p[1]) / ea,
- dxb = (pb[0] - p[0]) / eb,
- dyb = (pb[1] - p[1]) / eb,
- // determinant
- D = dyb * dxa - dya * dxb,
- // newton step — or half-step for small D
- l = (abs(D) < 0.5 ? 0.5 : 1) / D;
- da = (ty * dxb - tx * dyb) * l;
- db = (tx * dya - ty * dxa) * l;
- a += da;
- b += db;
- if (abs(da) < eps && abs(db) < eps) break; // we're crawling
- }
- return [a, b];
- };
- }
-
- // Bertin 1953 as a modified Briesemeister
- // https://bl.ocks.org/Fil/5b9ee9636dfb6ffa53443c9006beb642
- function bertin1953Raw() {
- var hammer = hammerRaw(1.68, 2),
- fu = 1.4, k = 12;
-
- function forward(lambda, phi) {
-
- if (lambda + phi < -fu) {
- var u = (lambda - phi + 1.6) * (lambda + phi + fu) / 8;
- lambda += u;
- phi -= 0.8 * u * sin(phi + pi / 2);
- }
-
- var r = hammer(lambda, phi);
-
- var d = (1 - cos(lambda * phi)) / k;
-
- if (r[1] < 0) {
- r[0] *= 1 + d;
- }
- if (r[1] > 0) {
- r[1] *= 1 + d / 1.5 * r[0] * r[0];
- }
-
- return r;
- }
-
- forward.invert = solve2d(forward);
- return forward;
- }
-
- function bertin() {
- // this projection should not be rotated
- return d3Geo.geoProjection(bertin1953Raw())
- .rotate([-16.5, -42])
- .scale(176.57)
- .center([7.93, 0.09]);
- }
-
- function mollweideBromleyTheta(cp, phi) {
- var cpsinPhi = cp * sin(phi), i = 30, delta;
- do phi -= delta = (phi + sin(phi) - cpsinPhi) / (1 + cos(phi));
- while (abs(delta) > epsilon$1 && --i > 0);
- return phi / 2;
- }
-
- function mollweideBromleyRaw(cx, cy, cp) {
-
- function forward(lambda, phi) {
- return [cx * lambda * cos(phi = mollweideBromleyTheta(cp, phi)), cy * sin(phi)];
- }
-
- forward.invert = function(x, y) {
- return y = asin(y / cy), [x / (cx * cos(y)), asin((2 * y + sin(2 * y)) / cp)];
- };
-
- return forward;
- }
-
- var mollweideRaw = mollweideBromleyRaw(sqrt2 / halfPi, sqrt2, pi);
-
- function mollweide$1() {
- return d3Geo.geoProjection(mollweideRaw)
- .scale(169.529);
- }
-
- var k = 2.00276,
- w = 1.11072;
-
- function boggsRaw(lambda, phi) {
- var theta = mollweideBromleyTheta(pi, phi);
- return [k * lambda / (1 / cos(phi) + w / cos(theta)), (phi + sqrt2 * sin(theta)) / k];
- }
-
- boggsRaw.invert = function(x, y) {
- var ky = k * y, theta = y < 0 ? -quarterPi : quarterPi, i = 25, delta, phi;
- do {
- phi = ky - sqrt2 * sin(theta);
- theta -= delta = (sin(2 * theta) + 2 * theta - pi * sin(phi)) / (2 * cos(2 * theta) + 2 + pi * cos(phi) * sqrt2 * cos(theta));
- } while (abs(delta) > epsilon$1 && --i > 0);
- phi = ky - sqrt2 * sin(theta);
- return [x * (1 / cos(phi) + w / cos(theta)) / k, phi];
- };
-
- function boggs$1() {
- return d3Geo.geoProjection(boggsRaw)
- .scale(160.857);
- }
-
- function parallel1(projectAt) {
- var phi0 = 0,
- m = d3Geo.geoProjectionMutator(projectAt),
- p = m(phi0);
-
- p.parallel = function(_) {
- return arguments.length ? m(phi0 = _ * radians) : phi0 * degrees;
- };
-
- return p;
- }
-
- function sinusoidalRaw(lambda, phi) {
- return [lambda * cos(phi), phi];
- }
-
- sinusoidalRaw.invert = function(x, y) {
- return [x / cos(y), y];
- };
-
- function sinusoidal$1() {
- return d3Geo.geoProjection(sinusoidalRaw)
- .scale(152.63);
- }
-
- function bonneRaw(phi0) {
- if (!phi0) return sinusoidalRaw;
- var cotPhi0 = 1 / tan(phi0);
-
- function forward(lambda, phi) {
- var rho = cotPhi0 + phi0 - phi,
- e = rho ? lambda * cos(phi) / rho : rho;
- return [rho * sin(e), cotPhi0 - rho * cos(e)];
- }
-
- forward.invert = function(x, y) {
- var rho = sqrt(x * x + (y = cotPhi0 - y) * y),
- phi = cotPhi0 + phi0 - rho;
- return [rho / cos(phi) * atan2(x, y), phi];
- };
-
- return forward;
- }
-
- function bonne() {
- return parallel1(bonneRaw)
- .scale(123.082)
- .center([0, 26.1441])
- .parallel(45);
- }
-
- function bottomleyRaw(sinPsi) {
-
- function forward(lambda, phi) {
- var rho = halfPi - phi,
- eta = rho ? lambda * sinPsi * sin(rho) / rho : rho;
- return [rho * sin(eta) / sinPsi, halfPi - rho * cos(eta)];
- }
-
- forward.invert = function(x, y) {
- var x1 = x * sinPsi,
- y1 = halfPi - y,
- rho = sqrt(x1 * x1 + y1 * y1),
- eta = atan2(x1, y1);
- return [(rho ? rho / sin(rho) : 1) * eta / sinPsi, halfPi - rho];
- };
-
- return forward;
- }
-
- function bottomley() {
- var sinPsi = 0.5,
- m = d3Geo.geoProjectionMutator(bottomleyRaw),
- p = m(sinPsi);
-
- p.fraction = function(_) {
- return arguments.length ? m(sinPsi = +_) : sinPsi;
- };
-
- return p
- .scale(158.837);
- }
-
- var bromleyRaw = mollweideBromleyRaw(1, 4 / pi, pi);
-
- function bromley() {
- return d3Geo.geoProjection(bromleyRaw)
- .scale(152.63);
- }
-
- // Azimuthal distance.
- function distance(dPhi, c1, s1, c2, s2, dLambda) {
- var cosdLambda = cos(dLambda), r;
- if (abs(dPhi) > 1 || abs(dLambda) > 1) {
- r = acos(s1 * s2 + c1 * c2 * cosdLambda);
- } else {
- var sindPhi = sin(dPhi / 2), sindLambda = sin(dLambda / 2);
- r = 2 * asin(sqrt(sindPhi * sindPhi + c1 * c2 * sindLambda * sindLambda));
- }
- return abs(r) > epsilon$1 ? [r, atan2(c2 * sin(dLambda), c1 * s2 - s1 * c2 * cosdLambda)] : [0, 0];
- }
-
- // Angle opposite a, and contained between sides of lengths b and c.
- function angle$1(b, c, a) {
- return acos((b * b + c * c - a * a) / (2 * b * c));
- }
-
- // Normalize longitude.
- function longitude(lambda) {
- return lambda - 2 * pi * floor((lambda + pi) / (2 * pi));
- }
-
- function chamberlinRaw(p0, p1, p2) {
- var points = [
- [p0[0], p0[1], sin(p0[1]), cos(p0[1])],
- [p1[0], p1[1], sin(p1[1]), cos(p1[1])],
- [p2[0], p2[1], sin(p2[1]), cos(p2[1])]
- ];
-
- for (var a = points[2], b, i = 0; i < 3; ++i, a = b) {
- b = points[i];
- a.v = distance(b[1] - a[1], a[3], a[2], b[3], b[2], b[0] - a[0]);
- a.point = [0, 0];
- }
-
- var beta0 = angle$1(points[0].v[0], points[2].v[0], points[1].v[0]),
- beta1 = angle$1(points[0].v[0], points[1].v[0], points[2].v[0]),
- beta2 = pi - beta0;
-
- points[2].point[1] = 0;
- points[0].point[0] = -(points[1].point[0] = points[0].v[0] / 2);
-
- var mean = [
- points[2].point[0] = points[0].point[0] + points[2].v[0] * cos(beta0),
- 2 * (points[0].point[1] = points[1].point[1] = points[2].v[0] * sin(beta0))
- ];
-
- function forward(lambda, phi) {
- var sinPhi = sin(phi),
- cosPhi = cos(phi),
- v = new Array(3), i;
-
- // Compute distance and azimuth from control points.
- for (i = 0; i < 3; ++i) {
- var p = points[i];
- v[i] = distance(phi - p[1], p[3], p[2], cosPhi, sinPhi, lambda - p[0]);
- if (!v[i][0]) return p.point;
- v[i][1] = longitude(v[i][1] - p.v[1]);
- }
-
- // Arithmetic mean of interception points.
- var point = mean.slice();
- for (i = 0; i < 3; ++i) {
- var j = i == 2 ? 0 : i + 1;
- var a = angle$1(points[i].v[0], v[i][0], v[j][0]);
- if (v[i][1] < 0) a = -a;
-
- if (!i) {
- point[0] += v[i][0] * cos(a);
- point[1] -= v[i][0] * sin(a);
- } else if (i == 1) {
- a = beta1 - a;
- point[0] -= v[i][0] * cos(a);
- point[1] -= v[i][0] * sin(a);
- } else {
- a = beta2 - a;
- point[0] += v[i][0] * cos(a);
- point[1] += v[i][0] * sin(a);
- }
- }
-
- point[0] /= 3, point[1] /= 3;
- return point;
- }
-
- return forward;
- }
-
- function pointRadians(p) {
- return p[0] *= radians, p[1] *= radians, p;
- }
-
- function chamberlinAfrica() {
- return chamberlin([0, 22], [45, 22], [22.5, -22])
- .scale(380)
- .center([22.5, 2]);
- }
-
- function chamberlin(p0, p1, p2) { // TODO order matters!
- var c = d3Geo.geoCentroid({type: "MultiPoint", coordinates: [p0, p1, p2]}),
- R = [-c[0], -c[1]],
- r = d3Geo.geoRotation(R),
- f = chamberlinRaw(pointRadians(r(p0)), pointRadians(r(p1)), pointRadians(r(p2)));
- f.invert = solve2d(f);
- var p = d3Geo.geoProjection(f).rotate(R),
- center = p.center;
-
- delete p.rotate;
-
- p.center = function(_) {
- return arguments.length ? center(r(_)) : r.invert(center());
- };
-
- return p
- .clipAngle(90);
- }
-
- function collignonRaw(lambda, phi) {
- var alpha = sqrt(1 - sin(phi));
- return [(2 / sqrtPi) * lambda * alpha, sqrtPi * (1 - alpha)];
- }
-
- collignonRaw.invert = function(x, y) {
- var lambda = (lambda = y / sqrtPi - 1) * lambda;
- return [lambda > 0 ? x * sqrt(pi / lambda) / 2 : 0, asin(1 - lambda)];
- };
-
- function collignon$1() {
- return d3Geo.geoProjection(collignonRaw)
- .scale(95.6464)
- .center([0, 30]);
- }
-
- function craigRaw(phi0) {
- var tanPhi0 = tan(phi0);
-
- function forward(lambda, phi) {
- return [lambda, (lambda ? lambda / sin(lambda) : 1) * (sin(phi) * cos(lambda) - tanPhi0 * cos(phi))];
- }
-
- forward.invert = tanPhi0 ? function(x, y) {
- if (x) y *= sin(x) / x;
- var cosLambda = cos(x);
- return [x, 2 * atan2(sqrt(cosLambda * cosLambda + tanPhi0 * tanPhi0 - y * y) - cosLambda, tanPhi0 - y)];
- } : function(x, y) {
- return [x, asin(x ? y * tan(x) / x : y)];
- };
-
- return forward;
- }
-
- function craig() {
- return parallel1(craigRaw)
- .scale(249.828)
- .clipAngle(90);
- }
-
- var sqrt3 = sqrt(3);
-
- function crasterRaw(lambda, phi) {
- return [sqrt3 * lambda * (2 * cos(2 * phi / 3) - 1) / sqrtPi, sqrt3 * sqrtPi * sin(phi / 3)];
- }
-
- crasterRaw.invert = function(x, y) {
- var phi = 3 * asin(y / (sqrt3 * sqrtPi));
- return [sqrtPi * x / (sqrt3 * (2 * cos(2 * phi / 3) - 1)), phi];
- };
-
- function craster() {
- return d3Geo.geoProjection(crasterRaw)
- .scale(156.19);
- }
-
- function cylindricalEqualAreaRaw(phi0) {
- var cosPhi0 = cos(phi0);
-
- function forward(lambda, phi) {
- return [lambda * cosPhi0, sin(phi) / cosPhi0];
- }
-
- forward.invert = function(x, y) {
- return [x / cosPhi0, asin(y * cosPhi0)];
- };
-
- return forward;
- }
-
- function cylindricalEqualArea() {
- return parallel1(cylindricalEqualAreaRaw)
- .parallel(38.58) // acos(sqrt(width / height / pi)) * radians
- .scale(195.044); // width / (sqrt(width / height / pi) * 2 * pi)
- }
-
- function cylindricalStereographicRaw(phi0) {
- var cosPhi0 = cos(phi0);
-
- function forward(lambda, phi) {
- return [lambda * cosPhi0, (1 + cosPhi0) * tan(phi / 2)];
- }
-
- forward.invert = function(x, y) {
- return [x / cosPhi0, atan(y / (1 + cosPhi0)) * 2];
- };
-
- return forward;
- }
-
- function cylindricalStereographic() {
- return parallel1(cylindricalStereographicRaw)
- .scale(124.75);
- }
-
- function eckert1Raw(lambda, phi) {
- var alpha = sqrt(8 / (3 * pi));
- return [
- alpha * lambda * (1 - abs(phi) / pi),
- alpha * phi
- ];
- }
-
- eckert1Raw.invert = function(x, y) {
- var alpha = sqrt(8 / (3 * pi)),
- phi = y / alpha;
- return [
- x / (alpha * (1 - abs(phi) / pi)),
- phi
- ];
- };
-
- function eckert1() {
- return d3Geo.geoProjection(eckert1Raw)
- .scale(165.664);
- }
-
- function eckert2Raw(lambda, phi) {
- var alpha = sqrt(4 - 3 * sin(abs(phi)));
- return [
- 2 / sqrt(6 * pi) * lambda * alpha,
- sign(phi) * sqrt(2 * pi / 3) * (2 - alpha)
- ];
- }
-
- eckert2Raw.invert = function(x, y) {
- var alpha = 2 - abs(y) / sqrt(2 * pi / 3);
- return [
- x * sqrt(6 * pi) / (2 * alpha),
- sign(y) * asin((4 - alpha * alpha) / 3)
- ];
- };
-
- function eckert2() {
- return d3Geo.geoProjection(eckert2Raw)
- .scale(165.664);
- }
-
- function eckert3Raw(lambda, phi) {
- var k = sqrt(pi * (4 + pi));
- return [
- 2 / k * lambda * (1 + sqrt(1 - 4 * phi * phi / (pi * pi))),
- 4 / k * phi
- ];
- }
-
- eckert3Raw.invert = function(x, y) {
- var k = sqrt(pi * (4 + pi)) / 2;
- return [
- x * k / (1 + sqrt(1 - y * y * (4 + pi) / (4 * pi))),
- y * k / 2
- ];
- };
-
- function eckert3() {
- return d3Geo.geoProjection(eckert3Raw)
- .scale(180.739);
- }
-
- function eckert4Raw(lambda, phi) {
- var k = (2 + halfPi) * sin(phi);
- phi /= 2;
- for (var i = 0, delta = Infinity; i < 10 && abs(delta) > epsilon$1; i++) {
- var cosPhi = cos(phi);
- phi -= delta = (phi + sin(phi) * (cosPhi + 2) - k) / (2 * cosPhi * (1 + cosPhi));
- }
- return [
- 2 / sqrt(pi * (4 + pi)) * lambda * (1 + cos(phi)),
- 2 * sqrt(pi / (4 + pi)) * sin(phi)
- ];
- }
-
- eckert4Raw.invert = function(x, y) {
- var A = y * sqrt((4 + pi) / pi) / 2,
- k = asin(A),
- c = cos(k);
- return [
- x / (2 / sqrt(pi * (4 + pi)) * (1 + c)),
- asin((k + A * (c + 2)) / (2 + halfPi))
- ];
- };
-
- function eckert4() {
- return d3Geo.geoProjection(eckert4Raw)
- .scale(180.739);
- }
-
- function eckert5Raw(lambda, phi) {
- return [
- lambda * (1 + cos(phi)) / sqrt(2 + pi),
- 2 * phi / sqrt(2 + pi)
- ];
- }
-
- eckert5Raw.invert = function(x, y) {
- var k = sqrt(2 + pi),
- phi = y * k / 2;
- return [
- k * x / (1 + cos(phi)),
- phi
- ];
- };
-
- function eckert5() {
- return d3Geo.geoProjection(eckert5Raw)
- .scale(173.044);
- }
-
- function eckert6Raw(lambda, phi) {
- var k = (1 + halfPi) * sin(phi);
- for (var i = 0, delta = Infinity; i < 10 && abs(delta) > epsilon$1; i++) {
- phi -= delta = (phi + sin(phi) - k) / (1 + cos(phi));
- }
- k = sqrt(2 + pi);
- return [
- lambda * (1 + cos(phi)) / k,
- 2 * phi / k
- ];
- }
-
- eckert6Raw.invert = function(x, y) {
- var j = 1 + halfPi,
- k = sqrt(j / 2);
- return [
- x * 2 * k / (1 + cos(y *= k)),
- asin((y + sin(y)) / j)
- ];
- };
-
- function eckert6() {
- return d3Geo.geoProjection(eckert6Raw)
- .scale(173.044);
- }
-
- var eisenlohrK = 3 + 2 * sqrt2;
-
- function eisenlohrRaw(lambda, phi) {
- var s0 = sin(lambda /= 2),
- c0 = cos(lambda),
- k = sqrt(cos(phi)),
- c1 = cos(phi /= 2),
- t = sin(phi) / (c1 + sqrt2 * c0 * k),
- c = sqrt(2 / (1 + t * t)),
- v = sqrt((sqrt2 * c1 + (c0 + s0) * k) / (sqrt2 * c1 + (c0 - s0) * k));
- return [
- eisenlohrK * (c * (v - 1 / v) - 2 * log(v)),
- eisenlohrK * (c * t * (v + 1 / v) - 2 * atan(t))
- ];
- }
-
- eisenlohrRaw.invert = function(x, y) {
- if (!(p = augustRaw.invert(x / 1.2, y * 1.065))) return null;
- var lambda = p[0], phi = p[1], i = 20, p;
- x /= eisenlohrK, y /= eisenlohrK;
- do {
- var _0 = lambda / 2,
- _1 = phi / 2,
- s0 = sin(_0),
- c0 = cos(_0),
- s1 = sin(_1),
- c1 = cos(_1),
- cos1 = cos(phi),
- k = sqrt(cos1),
- t = s1 / (c1 + sqrt2 * c0 * k),
- t2 = t * t,
- c = sqrt(2 / (1 + t2)),
- v0 = (sqrt2 * c1 + (c0 + s0) * k),
- v1 = (sqrt2 * c1 + (c0 - s0) * k),
- v2 = v0 / v1,
- v = sqrt(v2),
- vm1v = v - 1 / v,
- vp1v = v + 1 / v,
- fx = c * vm1v - 2 * log(v) - x,
- fy = c * t * vp1v - 2 * atan(t) - y,
- deltatDeltaLambda = s1 && sqrt1_2 * k * s0 * t2 / s1,
- deltatDeltaPhi = (sqrt2 * c0 * c1 + k) / (2 * (c1 + sqrt2 * c0 * k) * (c1 + sqrt2 * c0 * k) * k),
- deltacDeltat = -0.5 * t * c * c * c,
- deltacDeltaLambda = deltacDeltat * deltatDeltaLambda,
- deltacDeltaPhi = deltacDeltat * deltatDeltaPhi,
- A = (A = 2 * c1 + sqrt2 * k * (c0 - s0)) * A * v,
- deltavDeltaLambda = (sqrt2 * c0 * c1 * k + cos1) / A,
- deltavDeltaPhi = -(sqrt2 * s0 * s1) / (k * A),
- deltaxDeltaLambda = vm1v * deltacDeltaLambda - 2 * deltavDeltaLambda / v + c * (deltavDeltaLambda + deltavDeltaLambda / v2),
- deltaxDeltaPhi = vm1v * deltacDeltaPhi - 2 * deltavDeltaPhi / v + c * (deltavDeltaPhi + deltavDeltaPhi / v2),
- deltayDeltaLambda = t * vp1v * deltacDeltaLambda - 2 * deltatDeltaLambda / (1 + t2) + c * vp1v * deltatDeltaLambda + c * t * (deltavDeltaLambda - deltavDeltaLambda / v2),
- deltayDeltaPhi = t * vp1v * deltacDeltaPhi - 2 * deltatDeltaPhi / (1 + t2) + c * vp1v * deltatDeltaPhi + c * t * (deltavDeltaPhi - deltavDeltaPhi / v2),
- denominator = deltaxDeltaPhi * deltayDeltaLambda - deltayDeltaPhi * deltaxDeltaLambda;
- if (!denominator) break;
- var deltaLambda = (fy * deltaxDeltaPhi - fx * deltayDeltaPhi) / denominator,
- deltaPhi = (fx * deltayDeltaLambda - fy * deltaxDeltaLambda) / denominator;
- lambda -= deltaLambda;
- phi = max(-halfPi, min(halfPi, phi - deltaPhi));
- } while ((abs(deltaLambda) > epsilon$1 || abs(deltaPhi) > epsilon$1) && --i > 0);
- return abs(abs(phi) - halfPi) < epsilon$1 ? [0, phi] : i && [lambda, phi];
- };
-
- function eisenlohr() {
- return d3Geo.geoProjection(eisenlohrRaw)
- .scale(62.5271);
- }
-
- var faheyK = cos(35 * radians);
-
- function faheyRaw(lambda, phi) {
- var t = tan(phi / 2);
- return [lambda * faheyK * sqrt(1 - t * t), (1 + faheyK) * t];
- }
-
- faheyRaw.invert = function(x, y) {
- var t = y / (1 + faheyK);
- return [x && x / (faheyK * sqrt(1 - t * t)), 2 * atan(t)];
- };
-
- function fahey() {
- return d3Geo.geoProjection(faheyRaw)
- .scale(137.152);
- }
-
- function foucautRaw(lambda, phi) {
- var k = phi / 2, cosk = cos(k);
- return [ 2 * lambda / sqrtPi * cos(phi) * cosk * cosk, sqrtPi * tan(k)];
- }
-
- foucautRaw.invert = function(x, y) {
- var k = atan(y / sqrtPi), cosk = cos(k), phi = 2 * k;
- return [x * sqrtPi / 2 / (cos(phi) * cosk * cosk), phi];
- };
-
- function foucaut() {
- return d3Geo.geoProjection(foucautRaw)
- .scale(135.264);
- }
-
- function foucautSinusoidalRaw(alpha) {
- var beta = 1 - alpha,
- equatorial = raw(pi, 0)[0] - raw(-pi, 0)[0],
- polar = raw(0, halfPi)[1] - raw(0, -halfPi)[1],
- ratio = sqrt(2 * polar / equatorial);
-
- function raw(lambda, phi) {
- var cosphi = cos(phi),
- sinphi = sin(phi);
- return [
- cosphi / (beta + alpha * cosphi) * lambda,
- beta * phi + alpha * sinphi
- ];
- }
-
- function forward(lambda, phi) {
- var p = raw(lambda, phi);
- return [p[0] * ratio, p[1] / ratio];
- }
-
- function forwardMeridian(phi) {
- return forward(0, phi)[1];
- }
-
- forward.invert = function(x, y) {
- var phi = solve(forwardMeridian, y),
- lambda = x / ratio * (alpha + beta / cos(phi));
- return [lambda, phi];
- };
-
- return forward;
- }
-
- function foucautSinusoidal() {
- var alpha = 0.5,
- m = d3Geo.geoProjectionMutator(foucautSinusoidalRaw),
- p = m(alpha);
-
- p.alpha = function(_) {
- return arguments.length ? m(alpha = +_) : alpha;
- };
-
- return p
- .scale(168.725);
- }
-
- function gilbertForward(point) {
- return [point[0] / 2, asin(tan(point[1] / 2 * radians)) * degrees];
- }
-
- function gilbertInvert(point) {
- return [point[0] * 2, 2 * atan(sin(point[1] * radians)) * degrees];
- }
-
- function gilbert(projectionType) {
- if (projectionType == null) projectionType = d3Geo.geoOrthographic;
- var projection = projectionType(),
- equirectangular = d3Geo.geoEquirectangular().scale(degrees).precision(0).clipAngle(null).translate([0, 0]); // antimeridian cutting
-
- function gilbert(point) {
- return projection(gilbertForward(point));
- }
-
- if (projection.invert) gilbert.invert = function(point) {
- return gilbertInvert(projection.invert(point));
- };
-
- gilbert.stream = function(stream) {
- var s1 = projection.stream(stream), s0 = equirectangular.stream({
- point: function(lambda, phi) { s1.point(lambda / 2, asin(tan(-phi / 2 * radians)) * degrees); },
- lineStart: function() { s1.lineStart(); },
- lineEnd: function() { s1.lineEnd(); },
- polygonStart: function() { s1.polygonStart(); },
- polygonEnd: function() { s1.polygonEnd(); }
- });
- s0.sphere = s1.sphere;
- return s0;
- };
-
- function property(name) {
- gilbert[name] = function() {
- return arguments.length ? (projection[name].apply(projection, arguments), gilbert) : projection[name]();
- };
- }
-
- gilbert.rotate = function(_) {
- return arguments.length ? (equirectangular.rotate(_), gilbert) : equirectangular.rotate();
- };
-
- gilbert.center = function(_) {
- return arguments.length ? (projection.center(gilbertForward(_)), gilbert) : gilbertInvert(projection.center());
- };
-
- property("angle");
- property("clipAngle");
- property("clipExtent");
- property("fitExtent");
- property("fitHeight");
- property("fitSize");
- property("fitWidth");
- property("scale");
- property("translate");
- property("precision");
-
- return gilbert
- .scale(249.5);
- }
-
- function gingeryRaw(rho, n) {
- var k = 2 * pi / n,
- rho2 = rho * rho;
-
- function forward(lambda, phi) {
- var p = d3Geo.geoAzimuthalEquidistantRaw(lambda, phi),
- x = p[0],
- y = p[1],
- r2 = x * x + y * y;
-
- if (r2 > rho2) {
- var r = sqrt(r2),
- theta = atan2(y, x),
- theta0 = k * round(theta / k),
- alpha = theta - theta0,
- rhoCosAlpha = rho * cos(alpha),
- k_ = (rho * sin(alpha) - alpha * sin(rhoCosAlpha)) / (halfPi - rhoCosAlpha),
- s_ = gingeryLength(alpha, k_),
- e = (pi - rho) / gingeryIntegrate(s_, rhoCosAlpha, pi);
-
- x = r;
- var i = 50, delta;
- do {
- x -= delta = (rho + gingeryIntegrate(s_, rhoCosAlpha, x) * e - r) / (s_(x) * e);
- } while (abs(delta) > epsilon$1 && --i > 0);
-
- y = alpha * sin(x);
- if (x < halfPi) y -= k_ * (x - halfPi);
-
- var s = sin(theta0),
- c = cos(theta0);
- p[0] = x * c - y * s;
- p[1] = x * s + y * c;
- }
- return p;
- }
-
- forward.invert = function(x, y) {
- var r2 = x * x + y * y;
- if (r2 > rho2) {
- var r = sqrt(r2),
- theta = atan2(y, x),
- theta0 = k * round(theta / k),
- dTheta = theta - theta0;
-
- x = r * cos(dTheta);
- y = r * sin(dTheta);
-
- var x_halfPi = x - halfPi,
- sinx = sin(x),
- alpha = y / sinx,
- delta = x < halfPi ? Infinity : 0,
- i = 10;
-
- while (true) {
- var rhosinAlpha = rho * sin(alpha),
- rhoCosAlpha = rho * cos(alpha),
- sinRhoCosAlpha = sin(rhoCosAlpha),
- halfPi_RhoCosAlpha = halfPi - rhoCosAlpha,
- k_ = (rhosinAlpha - alpha * sinRhoCosAlpha) / halfPi_RhoCosAlpha,
- s_ = gingeryLength(alpha, k_);
-
- if (abs(delta) < epsilon2 || !--i) break;
-
- alpha -= delta = (alpha * sinx - k_ * x_halfPi - y) / (
- sinx - x_halfPi * 2 * (
- halfPi_RhoCosAlpha * (rhoCosAlpha + alpha * rhosinAlpha * cos(rhoCosAlpha) - sinRhoCosAlpha) -
- rhosinAlpha * (rhosinAlpha - alpha * sinRhoCosAlpha)
- ) / (halfPi_RhoCosAlpha * halfPi_RhoCosAlpha));
- }
- r = rho + gingeryIntegrate(s_, rhoCosAlpha, x) * (pi - rho) / gingeryIntegrate(s_, rhoCosAlpha, pi);
- theta = theta0 + alpha;
- x = r * cos(theta);
- y = r * sin(theta);
- }
- return d3Geo.geoAzimuthalEquidistantRaw.invert(x, y);
- };
-
- return forward;
- }
-
- function gingeryLength(alpha, k) {
- return function(x) {
- var y_ = alpha * cos(x);
- if (x < halfPi) y_ -= k;
- return sqrt(1 + y_ * y_);
- };
- }
-
- // Numerical integration: trapezoidal rule.
- function gingeryIntegrate(f, a, b) {
- var n = 50,
- h = (b - a) / n,
- s = f(a) + f(b);
- for (var i = 1, x = a; i < n; ++i) s += 2 * f(x += h);
- return s * 0.5 * h;
- }
-
- function gingery() {
- var n = 6,
- rho = 30 * radians,
- cRho = cos(rho),
- sRho = sin(rho),
- m = d3Geo.geoProjectionMutator(gingeryRaw),
- p = m(rho, n),
- stream_ = p.stream,
- epsilon = 1e-2,
- cr = -cos(epsilon * radians),
- sr = sin(epsilon * radians);
-
- p.radius = function(_) {
- if (!arguments.length) return rho * degrees;
- cRho = cos(rho = _ * radians);
- sRho = sin(rho);
- return m(rho, n);
- };
-
- p.lobes = function(_) {
- if (!arguments.length) return n;
- return m(rho, n = +_);
- };
-
- p.stream = function(stream) {
- var rotate = p.rotate(),
- rotateStream = stream_(stream),
- sphereStream = (p.rotate([0, 0]), stream_(stream));
- p.rotate(rotate);
- rotateStream.sphere = function() {
- sphereStream.polygonStart(), sphereStream.lineStart();
- for (var i = 0, delta = 2 * pi / n, phi = 0; i < n; ++i, phi -= delta) {
- sphereStream.point(atan2(sr * cos(phi), cr) * degrees, asin(sr * sin(phi)) * degrees);
- sphereStream.point(atan2(sRho * cos(phi - delta / 2), cRho) * degrees, asin(sRho * sin(phi - delta / 2)) * degrees);
- }
- sphereStream.lineEnd(), sphereStream.polygonEnd();
- };
- return rotateStream;
- };
-
- return p
- .rotate([90, -40])
- .scale(91.7095)
- .clipAngle(180 - 1e-3);
- }
-
- function ginzburgPolyconicRaw(a, b, c, d, e, f, g, h) {
- if (arguments.length < 8) h = 0;
-
- function forward(lambda, phi) {
- if (!phi) return [a * lambda / pi, 0];
- var phi2 = phi * phi,
- xB = a + phi2 * (b + phi2 * (c + phi2 * d)),
- yB = phi * (e - 1 + phi2 * (f - h + phi2 * g)),
- m = (xB * xB + yB * yB) / (2 * yB),
- alpha = lambda * asin(xB / m) / pi;
- return [m * sin(alpha), phi * (1 + phi2 * h) + m * (1 - cos(alpha))];
- }
-
- forward.invert = function(x, y) {
- var lambda = pi * x / a,
- phi = y,
- deltaLambda, deltaPhi, i = 50;
- do {
- var phi2 = phi * phi,
- xB = a + phi2 * (b + phi2 * (c + phi2 * d)),
- yB = phi * (e - 1 + phi2 * (f - h + phi2 * g)),
- p = xB * xB + yB * yB,
- q = 2 * yB,
- m = p / q,
- m2 = m * m,
- dAlphadLambda = asin(xB / m) / pi,
- alpha = lambda * dAlphadLambda,
- xB2 = xB * xB,
- dxBdPhi = (2 * b + phi2 * (4 * c + phi2 * 6 * d)) * phi,
- dyBdPhi = e + phi2 * (3 * f + phi2 * 5 * g),
- dpdPhi = 2 * (xB * dxBdPhi + yB * (dyBdPhi - 1)),
- dqdPhi = 2 * (dyBdPhi - 1),
- dmdPhi = (dpdPhi * q - p * dqdPhi) / (q * q),
- cosAlpha = cos(alpha),
- sinAlpha = sin(alpha),
- mcosAlpha = m * cosAlpha,
- msinAlpha = m * sinAlpha,
- dAlphadPhi = ((lambda / pi) * (1 / sqrt(1 - xB2 / m2)) * (dxBdPhi * m - xB * dmdPhi)) / m2,
- fx = msinAlpha - x,
- fy = phi * (1 + phi2 * h) + m - mcosAlpha - y,
- deltaxDeltaPhi = dmdPhi * sinAlpha + mcosAlpha * dAlphadPhi,
- deltaxDeltaLambda = mcosAlpha * dAlphadLambda,
- deltayDeltaPhi = 1 + dmdPhi - (dmdPhi * cosAlpha - msinAlpha * dAlphadPhi),
- deltayDeltaLambda = msinAlpha * dAlphadLambda,
- denominator = deltaxDeltaPhi * deltayDeltaLambda - deltayDeltaPhi * deltaxDeltaLambda;
- if (!denominator) break;
- lambda -= deltaLambda = (fy * deltaxDeltaPhi - fx * deltayDeltaPhi) / denominator;
- phi -= deltaPhi = (fx * deltayDeltaLambda - fy * deltaxDeltaLambda) / denominator;
- } while ((abs(deltaLambda) > epsilon$1 || abs(deltaPhi) > epsilon$1) && --i > 0);
- return [lambda, phi];
- };
-
- return forward;
- }
-
- var ginzburg4Raw = ginzburgPolyconicRaw(2.8284, -1.6988, 0.75432, -0.18071, 1.76003, -0.38914, 0.042555);
-
- function ginzburg4() {
- return d3Geo.geoProjection(ginzburg4Raw)
- .scale(149.995);
- }
-
- var ginzburg5Raw = ginzburgPolyconicRaw(2.583819, -0.835827, 0.170354, -0.038094, 1.543313, -0.411435,0.082742);
-
- function ginzburg5() {
- return d3Geo.geoProjection(ginzburg5Raw)
- .scale(153.93);
- }
-
- var ginzburg6Raw = ginzburgPolyconicRaw(5 / 6 * pi, -0.62636, -0.0344, 0, 1.3493, -0.05524, 0, 0.045);
-
- function ginzburg6() {
- return d3Geo.geoProjection(ginzburg6Raw)
- .scale(130.945);
- }
-
- function ginzburg8Raw(lambda, phi) {
- var lambda2 = lambda * lambda,
- phi2 = phi * phi;
- return [
- lambda * (1 - 0.162388 * phi2) * (0.87 - 0.000952426 * lambda2 * lambda2),
- phi * (1 + phi2 / 12)
- ];
- }
-
- ginzburg8Raw.invert = function(x, y) {
- var lambda = x,
- phi = y,
- i = 50, delta;
- do {
- var phi2 = phi * phi;
- phi -= delta = (phi * (1 + phi2 / 12) - y) / (1 + phi2 / 4);
- } while (abs(delta) > epsilon$1 && --i > 0);
- i = 50;
- x /= 1 -0.162388 * phi2;
- do {
- var lambda4 = (lambda4 = lambda * lambda) * lambda4;
- lambda -= delta = (lambda * (0.87 - 0.000952426 * lambda4) - x) / (0.87 - 0.00476213 * lambda4);
- } while (abs(delta) > epsilon$1 && --i > 0);
- return [lambda, phi];
- };
-
- function ginzburg8() {
- return d3Geo.geoProjection(ginzburg8Raw)
- .scale(131.747);
- }
-
- var ginzburg9Raw = ginzburgPolyconicRaw(2.6516, -0.76534, 0.19123, -0.047094, 1.36289, -0.13965,0.031762);
-
- function ginzburg9() {
- return d3Geo.geoProjection(ginzburg9Raw)
- .scale(131.087);
- }
-
- function squareRaw(project) {
- var dx = project(halfPi, 0)[0] - project(-halfPi, 0)[0];
-
- function projectSquare(lambda, phi) {
- var s = lambda > 0 ? -0.5 : 0.5,
- point = project(lambda + s * pi, phi);
- point[0] -= s * dx;
- return point;
- }
-
- if (project.invert) projectSquare.invert = function(x, y) {
- var s = x > 0 ? -0.5 : 0.5,
- location = project.invert(x + s * dx, y),
- lambda = location[0] - s * pi;
- if (lambda < -pi) lambda += 2 * pi;
- else if (lambda > pi) lambda -= 2 * pi;
- location[0] = lambda;
- return location;
- };
-
- return projectSquare;
- }
-
- function gringortenRaw(lambda, phi) {
- var sLambda = sign(lambda),
- sPhi = sign(phi),
- cosPhi = cos(phi),
- x = cos(lambda) * cosPhi,
- y = sin(lambda) * cosPhi,
- z = sin(sPhi * phi);
- lambda = abs(atan2(y, z));
- phi = asin(x);
- if (abs(lambda - halfPi) > epsilon$1) lambda %= halfPi;
- var point = gringortenHexadecant(lambda > pi / 4 ? halfPi - lambda : lambda, phi);
- if (lambda > pi / 4) z = point[0], point[0] = -point[1], point[1] = -z;
- return (point[0] *= sLambda, point[1] *= -sPhi, point);
- }
-
- gringortenRaw.invert = function(x, y) {
- if (abs(x) > 1) x = sign(x) * 2 - x;
- if (abs(y) > 1) y = sign(y) * 2 - y;
- var sx = sign(x),
- sy = sign(y),
- x0 = -sx * x,
- y0 = -sy * y,
- t = y0 / x0 < 1,
- p = gringortenHexadecantInvert(t ? y0 : x0, t ? x0 : y0),
- lambda = p[0],
- phi = p[1],
- cosPhi = cos(phi);
- if (t) lambda = -halfPi - lambda;
- return [sx * (atan2(sin(lambda) * cosPhi, -sin(phi)) + pi), sy * asin(cos(lambda) * cosPhi)];
- };
-
- function gringortenHexadecant(lambda, phi) {
- if (phi === halfPi) return [0, 0];
-
- var sinPhi = sin(phi),
- r = sinPhi * sinPhi,
- r2 = r * r,
- j = 1 + r2,
- k = 1 + 3 * r2,
- q = 1 - r2,
- z = asin(1 / sqrt(j)),
- v = q + r * j * z,
- p2 = (1 - sinPhi) / v,
- p = sqrt(p2),
- a2 = p2 * j,
- a = sqrt(a2),
- h = p * q,
- x,
- i;
-
- if (lambda === 0) return [0, -(h + r * a)];
-
- var cosPhi = cos(phi),
- secPhi = 1 / cosPhi,
- drdPhi = 2 * sinPhi * cosPhi,
- dvdPhi = (-3 * r + z * k) * drdPhi,
- dp2dPhi = (-v * cosPhi - (1 - sinPhi) * dvdPhi) / (v * v),
- dpdPhi = (0.5 * dp2dPhi) / p,
- dhdPhi = q * dpdPhi - 2 * r * p * drdPhi,
- dra2dPhi = r * j * dp2dPhi + p2 * k * drdPhi,
- mu = -secPhi * drdPhi,
- nu = -secPhi * dra2dPhi,
- zeta = -2 * secPhi * dhdPhi,
- lambda1 = 4 * lambda / pi,
- delta;
-
- // Slower but accurate bisection method.
- if (lambda > 0.222 * pi || phi < pi / 4 && lambda > 0.175 * pi) {
- x = (h + r * sqrt(a2 * (1 + r2) - h * h)) / (1 + r2);
- if (lambda > pi / 4) return [x, x];
- var x1 = x, x0 = 0.5 * x;
- x = 0.5 * (x0 + x1), i = 50;
- do {
- var g = sqrt(a2 - x * x),
- f = (x * (zeta + mu * g) + nu * asin(x / a)) - lambda1;
- if (!f) break;
- if (f < 0) x0 = x;
- else x1 = x;
- x = 0.5 * (x0 + x1);
- } while (abs(x1 - x0) > epsilon$1 && --i > 0);
- }
-
- // Newton-Raphson.
- else {
- x = epsilon$1, i = 25;
- do {
- var x2 = x * x,
- g2 = sqrt(a2 - x2),
- zetaMug = zeta + mu * g2,
- f2 = x * zetaMug + nu * asin(x / a) - lambda1,
- df = zetaMug + (nu - mu * x2) / g2;
- x -= delta = g2 ? f2 / df : 0;
- } while (abs(delta) > epsilon$1 && --i > 0);
- }
-
- return [x, -h - r * sqrt(a2 - x * x)];
- }
-
- function gringortenHexadecantInvert(x, y) {
- var x0 = 0,
- x1 = 1,
- r = 0.5,
- i = 50;
-
- while (true) {
- var r2 = r * r,
- sinPhi = sqrt(r),
- z = asin(1 / sqrt(1 + r2)),
- v = (1 - r2) + r * (1 + r2) * z,
- p2 = (1 - sinPhi) / v,
- p = sqrt(p2),
- a2 = p2 * (1 + r2),
- h = p * (1 - r2),
- g2 = a2 - x * x,
- g = sqrt(g2),
- y0 = y + h + r * g;
- if (abs(x1 - x0) < epsilon2 || --i === 0 || y0 === 0) break;
- if (y0 > 0) x0 = r;
- else x1 = r;
- r = 0.5 * (x0 + x1);
- }
-
- if (!i) return null;
-
- var phi = asin(sinPhi),
- cosPhi = cos(phi),
- secPhi = 1 / cosPhi,
- drdPhi = 2 * sinPhi * cosPhi,
- dvdPhi = (-3 * r + z * (1 + 3 * r2)) * drdPhi,
- dp2dPhi = (-v * cosPhi - (1 - sinPhi) * dvdPhi) / (v * v),
- dpdPhi = 0.5 * dp2dPhi / p,
- dhdPhi = (1 - r2) * dpdPhi - 2 * r * p * drdPhi,
- zeta = -2 * secPhi * dhdPhi,
- mu = -secPhi * drdPhi,
- nu = -secPhi * (r * (1 + r2) * dp2dPhi + p2 * (1 + 3 * r2) * drdPhi);
-
- return [pi / 4 * (x * (zeta + mu * g) + nu * asin(x / sqrt(a2))), phi];
- }
-
- function gringorten$1() {
- return d3Geo.geoProjection(squareRaw(gringortenRaw))
- .scale(239.75);
- }
-
- // Returns [sn, cn, dn](u + iv|m).
- function ellipticJi(u, v, m) {
- var a, b, c;
- if (!u) {
- b = ellipticJ(v, 1 - m);
- return [
- [0, b[0] / b[1]],
- [1 / b[1], 0],
- [b[2] / b[1], 0]
- ];
- }
- a = ellipticJ(u, m);
- if (!v) return [[a[0], 0], [a[1], 0], [a[2], 0]];
- b = ellipticJ(v, 1 - m);
- c = b[1] * b[1] + m * a[0] * a[0] * b[0] * b[0];
- return [
- [a[0] * b[2] / c, a[1] * a[2] * b[0] * b[1] / c],
- [a[1] * b[1] / c, -a[0] * a[2] * b[0] * b[2] / c],
- [a[2] * b[1] * b[2] / c, -m * a[0] * a[1] * b[0] / c]
- ];
- }
-
- // Returns [sn, cn, dn, ph](u|m).
- function ellipticJ(u, m) {
- var ai, b, phi, t, twon;
- if (m < epsilon$1) {
- t = sin(u);
- b = cos(u);
- ai = m * (u - t * b) / 4;
- return [
- t - ai * b,
- b + ai * t,
- 1 - m * t * t / 2,
- u - ai
- ];
- }
- if (m >= 1 - epsilon$1) {
- ai = (1 - m) / 4;
- b = cosh(u);
- t = tanh(u);
- phi = 1 / b;
- twon = b * sinh(u);
- return [
- t + ai * (twon - u) / (b * b),
- phi - ai * t * phi * (twon - u),
- phi + ai * t * phi * (twon + u),
- 2 * atan(exp(u)) - halfPi + ai * (twon - u) / b
- ];
- }
-
- var a = [1, 0, 0, 0, 0, 0, 0, 0, 0],
- c = [sqrt(m), 0, 0, 0, 0, 0, 0, 0, 0],
- i = 0;
- b = sqrt(1 - m);
- twon = 1;
-
- while (abs(c[i] / a[i]) > epsilon$1 && i < 8) {
- ai = a[i++];
- c[i] = (ai - b) / 2;
- a[i] = (ai + b) / 2;
- b = sqrt(ai * b);
- twon *= 2;
- }
-
- phi = twon * a[i] * u;
- do {
- t = c[i] * sin(b = phi) / a[i];
- phi = (asin(t) + phi) / 2;
- } while (--i);
-
- return [sin(phi), t = cos(phi), t / cos(phi - b), phi];
- }
-
- // Calculate F(phi+iPsi|m).
- // See Abramowitz and Stegun, 17.4.11.
- function ellipticFi(phi, psi, m) {
- var r = abs(phi),
- i = abs(psi),
- sinhPsi = sinh(i);
- if (r) {
- var cscPhi = 1 / sin(r),
- cotPhi2 = 1 / (tan(r) * tan(r)),
- b = -(cotPhi2 + m * (sinhPsi * sinhPsi * cscPhi * cscPhi) - 1 + m),
- c = (m - 1) * cotPhi2,
- cotLambda2 = (-b + sqrt(b * b - 4 * c)) / 2;
- return [
- ellipticF(atan(1 / sqrt(cotLambda2)), m) * sign(phi),
- ellipticF(atan(sqrt((cotLambda2 / cotPhi2 - 1) / m)), 1 - m) * sign(psi)
- ];
- }
- return [
- 0,
- ellipticF(atan(sinhPsi), 1 - m) * sign(psi)
- ];
- }
-
- // Calculate F(phi|m) where m = k² = sin²α.
- // See Abramowitz and Stegun, 17.6.7.
- function ellipticF(phi, m) {
- if (!m) return phi;
- if (m === 1) return log(tan(phi / 2 + quarterPi));
- var a = 1,
- b = sqrt(1 - m),
- c = sqrt(m);
- for (var i = 0; abs(c) > epsilon$1; i++) {
- if (phi % pi) {
- var dPhi = atan(b * tan(phi) / a);
- if (dPhi < 0) dPhi += pi;
- phi += dPhi + ~~(phi / pi) * pi;
- } else phi += phi;
- c = (a + b) / 2;
- b = sqrt(a * b);
- c = ((a = c) - b) / 2;
- }
- return phi / (pow(2, i) * a);
- }
-
- function guyouRaw(lambda, phi) {
- var k_ = (sqrt2 - 1) / (sqrt2 + 1),
- k = sqrt(1 - k_ * k_),
- K = ellipticF(halfPi, k * k),
- f = -1,
- psi = log(tan(pi / 4 + abs(phi) / 2)),
- r = exp(f * psi) / sqrt(k_),
- at = guyouComplexAtan(r * cos(f * lambda), r * sin(f * lambda)),
- t = ellipticFi(at[0], at[1], k * k);
- return [-t[1], (phi >= 0 ? 1 : -1) * (0.5 * K - t[0])];
- }
-
- function guyouComplexAtan(x, y) {
- var x2 = x * x,
- y_1 = y + 1,
- t = 1 - x2 - y * y;
- return [
- 0.5 * ((x >= 0 ? halfPi : -halfPi) - atan2(t, 2 * x)),
- -0.25 * log(t * t + 4 * x2) +0.5 * log(y_1 * y_1 + x2)
- ];
- }
-
- function guyouComplexDivide(a, b) {
- var denominator = b[0] * b[0] + b[1] * b[1];
- return [
- (a[0] * b[0] + a[1] * b[1]) / denominator,
- (a[1] * b[0] - a[0] * b[1]) / denominator
- ];
- }
-
- guyouRaw.invert = function(x, y) {
- var k_ = (sqrt2 - 1) / (sqrt2 + 1),
- k = sqrt(1 - k_ * k_),
- K = ellipticF(halfPi, k * k),
- f = -1,
- j = ellipticJi(0.5 * K - y, -x, k * k),
- tn = guyouComplexDivide(j[0], j[1]),
- lambda = atan2(tn[1], tn[0]) / f;
- return [
- lambda,
- 2 * atan(exp(0.5 / f * log(k_ * tn[0] * tn[0] + k_ * tn[1] * tn[1]))) - halfPi
- ];
- };
-
- function guyou() {
- return d3Geo.geoProjection(squareRaw(guyouRaw))
- .scale(151.496);
- }
-
- function hammerRetroazimuthalRaw(phi0) {
- var sinPhi0 = sin(phi0),
- cosPhi0 = cos(phi0),
- rotate = hammerRetroazimuthalRotation(phi0);
-
- rotate.invert = hammerRetroazimuthalRotation(-phi0);
-
- function forward(lambda, phi) {
- var p = rotate(lambda, phi);
- lambda = p[0], phi = p[1];
- var sinPhi = sin(phi),
- cosPhi = cos(phi),
- cosLambda = cos(lambda),
- z = acos(sinPhi0 * sinPhi + cosPhi0 * cosPhi * cosLambda),
- sinz = sin(z),
- K = abs(sinz) > epsilon$1 ? z / sinz : 1;
- return [
- K * cosPhi0 * sin(lambda),
- (abs(lambda) > halfPi ? K : -K) // rotate for back hemisphere
- * (sinPhi0 * cosPhi - cosPhi0 * sinPhi * cosLambda)
- ];
- }
-
- forward.invert = function(x, y) {
- var rho = sqrt(x * x + y * y),
- sinz = -sin(rho),
- cosz = cos(rho),
- a = rho * cosz,
- b = -y * sinz,
- c = rho * sinPhi0,
- d = sqrt(a * a + b * b - c * c),
- phi = atan2(a * c + b * d, b * c - a * d),
- lambda = (rho > halfPi ? -1 : 1) * atan2(x * sinz, rho * cos(phi) * cosz + y * sin(phi) * sinz);
- return rotate.invert(lambda, phi);
- };
-
- return forward;
- }
-
- // Latitudinal rotation by phi0.
- // Temporary hack until D3 supports arbitrary small-circle clipping origins.
- function hammerRetroazimuthalRotation(phi0) {
- var sinPhi0 = sin(phi0),
- cosPhi0 = cos(phi0);
-
- return function(lambda, phi) {
- var cosPhi = cos(phi),
- x = cos(lambda) * cosPhi,
- y = sin(lambda) * cosPhi,
- z = sin(phi);
- return [
- atan2(y, x * cosPhi0 - z * sinPhi0),
- asin(z * cosPhi0 + x * sinPhi0)
- ];
- };
- }
-
- function hammerRetroazimuthal() {
- var phi0 = 0,
- m = d3Geo.geoProjectionMutator(hammerRetroazimuthalRaw),
- p = m(phi0),
- rotate_ = p.rotate,
- stream_ = p.stream,
- circle = d3Geo.geoCircle();
-
- p.parallel = function(_) {
- if (!arguments.length) return phi0 * degrees;
- var r = p.rotate();
- return m(phi0 = _ * radians).rotate(r);
- };
-
- // Temporary hack; see hammerRetroazimuthalRotation.
- p.rotate = function(_) {
- if (!arguments.length) return (_ = rotate_.call(p), _[1] += phi0 * degrees, _);
- rotate_.call(p, [_[0], _[1] - phi0 * degrees]);
- circle.center([-_[0], -_[1]]);
- return p;
- };
-
- p.stream = function(stream) {
- stream = stream_(stream);
- stream.sphere = function() {
- stream.polygonStart();
- var epsilon = 1e-2,
- ring = circle.radius(90 - epsilon)().coordinates[0],
- n = ring.length - 1,
- i = -1,
- p;
- stream.lineStart();
- while (++i < n) stream.point((p = ring[i])[0], p[1]);
- stream.lineEnd();
- ring = circle.radius(90 + epsilon)().coordinates[0];
- n = ring.length - 1;
- stream.lineStart();
- while (--i >= 0) stream.point((p = ring[i])[0], p[1]);
- stream.lineEnd();
- stream.polygonEnd();
- };
- return stream;
- };
-
- return p
- .scale(79.4187)
- .parallel(45)
- .clipAngle(180 - 1e-3);
- }
-
- var K$1 = 3,
- healpixParallel = asin(1 - 1 / K$1) * degrees,
- healpixLambert = cylindricalEqualAreaRaw(0);
-
- function healpixRaw(H) {
- var phi0 = healpixParallel * radians,
- dx = collignonRaw(pi, phi0)[0] - collignonRaw(-pi, phi0)[0],
- y0 = healpixLambert(0, phi0)[1],
- y1 = collignonRaw(0, phi0)[1],
- dy1 = sqrtPi - y1,
- k = tau / H,
- w = 4 / tau,
- h = y0 + (dy1 * dy1 * 4) / tau;
-
- function forward(lambda, phi) {
- var point,
- phi2 = abs(phi);
- if (phi2 > phi0) {
- var i = min(H - 1, max(0, floor((lambda + pi) / k)));
- lambda += pi * (H - 1) / H - i * k;
- point = collignonRaw(lambda, phi2);
- point[0] = point[0] * tau / dx - tau * (H - 1) / (2 * H) + i * tau / H;
- point[1] = y0 + (point[1] - y1) * 4 * dy1 / tau;
- if (phi < 0) point[1] = -point[1];
- } else {
- point = healpixLambert(lambda, phi);
- }
- point[0] *= w, point[1] /= h;
- return point;
- }
-
- forward.invert = function(x, y) {
- x /= w, y *= h;
- var y2 = abs(y);
- if (y2 > y0) {
- var i = min(H - 1, max(0, floor((x + pi) / k)));
- x = (x + pi * (H - 1) / H - i * k) * dx / tau;
- var point = collignonRaw.invert(x, 0.25 * (y2 - y0) * tau / dy1 + y1);
- point[0] -= pi * (H - 1) / H - i * k;
- if (y < 0) point[1] = -point[1];
- return point;
- }
- return healpixLambert.invert(x, y);
- };
-
- return forward;
- }
-
- function sphereTop(x, i) {
- return [x, i & 1 ? 90 - epsilon$1 : healpixParallel];
- }
-
- function sphereBottom(x, i) {
- return [x, i & 1 ? -90 + epsilon$1 : -healpixParallel];
- }
-
- function sphereNudge(d) {
- return [d[0] * (1 - epsilon$1), d[1]];
- }
-
- function sphere(step) {
- var c = [].concat(
- d3Array.range(-180, 180 + step / 2, step).map(sphereTop),
- d3Array.range(180, -180 - step / 2, -step).map(sphereBottom)
- );
- return {
- type: "Polygon",
- coordinates: [step === 180 ? c.map(sphereNudge) : c]
- };
- }
-
- function healpix() {
- var H = 4,
- m = d3Geo.geoProjectionMutator(healpixRaw),
- p = m(H),
- stream_ = p.stream;
-
- p.lobes = function(_) {
- return arguments.length ? m(H = +_) : H;
- };
-
- p.stream = function(stream) {
- var rotate = p.rotate(),
- rotateStream = stream_(stream),
- sphereStream = (p.rotate([0, 0]), stream_(stream));
- p.rotate(rotate);
- rotateStream.sphere = function() { d3Geo.geoStream(sphere(180 / H), sphereStream); };
- return rotateStream;
- };
-
- return p
- .scale(239.75);
- }
-
- function hillRaw(K) {
- var L = 1 + K,
- sinBt = sin(1 / L),
- Bt = asin(sinBt),
- A = 2 * sqrt(pi / (B = pi + 4 * Bt * L)),
- B,
- rho0 = 0.5 * A * (L + sqrt(K * (2 + K))),
- K2 = K * K,
- L2 = L * L;
-
- function forward(lambda, phi) {
- var t = 1 - sin(phi),
- rho,
- omega;
- if (t && t < 2) {
- var theta = halfPi - phi, i = 25, delta;
- do {
- var sinTheta = sin(theta),
- cosTheta = cos(theta),
- Bt_Bt1 = Bt + atan2(sinTheta, L - cosTheta),
- C = 1 + L2 - 2 * L * cosTheta;
- theta -= delta = (theta - K2 * Bt - L * sinTheta + C * Bt_Bt1 -0.5 * t * B) / (2 * L * sinTheta * Bt_Bt1);
- } while (abs(delta) > epsilon2 && --i > 0);
- rho = A * sqrt(C);
- omega = lambda * Bt_Bt1 / pi;
- } else {
- rho = A * (K + t);
- omega = lambda * Bt / pi;
- }
- return [
- rho * sin(omega),
- rho0 - rho * cos(omega)
- ];
- }
-
- forward.invert = function(x, y) {
- var rho2 = x * x + (y -= rho0) * y,
- cosTheta = (1 + L2 - rho2 / (A * A)) / (2 * L),
- theta = acos(cosTheta),
- sinTheta = sin(theta),
- Bt_Bt1 = Bt + atan2(sinTheta, L - cosTheta);
- return [
- asin(x / sqrt(rho2)) * pi / Bt_Bt1,
- asin(1 - 2 * (theta - K2 * Bt - L * sinTheta + (1 + L2 - 2 * L * cosTheta) * Bt_Bt1) / B)
- ];
- };
-
- return forward;
- }
-
- function hill() {
- var K = 1,
- m = d3Geo.geoProjectionMutator(hillRaw),
- p = m(K);
-
- p.ratio = function(_) {
- return arguments.length ? m(K = +_) : K;
- };
-
- return p
- .scale(167.774)
- .center([0, 18.67]);
- }
-
- var sinuMollweidePhi = 0.7109889596207567;
-
- var sinuMollweideY = 0.0528035274542;
-
- function sinuMollweideRaw(lambda, phi) {
- return phi > -sinuMollweidePhi
- ? (lambda = mollweideRaw(lambda, phi), lambda[1] += sinuMollweideY, lambda)
- : sinusoidalRaw(lambda, phi);
- }
-
- sinuMollweideRaw.invert = function(x, y) {
- return y > -sinuMollweidePhi
- ? mollweideRaw.invert(x, y - sinuMollweideY)
- : sinusoidalRaw.invert(x, y);
- };
-
- function sinuMollweide$1() {
- return d3Geo.geoProjection(sinuMollweideRaw)
- .rotate([-20, -55])
- .scale(164.263)
- .center([0, -5.4036]);
- }
-
- function homolosineRaw(lambda, phi) {
- return abs(phi) > sinuMollweidePhi
- ? (lambda = mollweideRaw(lambda, phi), lambda[1] -= phi > 0 ? sinuMollweideY : -sinuMollweideY, lambda)
- : sinusoidalRaw(lambda, phi);
- }
-
- homolosineRaw.invert = function(x, y) {
- return abs(y) > sinuMollweidePhi
- ? mollweideRaw.invert(x, y + (y > 0 ? sinuMollweideY : -sinuMollweideY))
- : sinusoidalRaw.invert(x, y);
- };
-
- function homolosine$1() {
- return d3Geo.geoProjection(homolosineRaw)
- .scale(152.63);
- }
-
- function hufnagelRaw(a, b, psiMax, ratio) {
- var k = sqrt(
- (4 * pi) /
- (2 * psiMax +
- (1 + a - b / 2) * sin(2 * psiMax) +
- ((a + b) / 2) * sin(4 * psiMax) +
- (b / 2) * sin(6 * psiMax))
- ),
- c = sqrt(
- ratio *
- sin(psiMax) *
- sqrt((1 + a * cos(2 * psiMax) + b * cos(4 * psiMax)) / (1 + a + b))
- ),
- M = psiMax * mapping(1);
-
- function radius(psi) {
- return sqrt(1 + a * cos(2 * psi) + b * cos(4 * psi));
- }
-
- function mapping(t) {
- var psi = t * psiMax;
- return (
- (2 * psi +
- (1 + a - b / 2) * sin(2 * psi) +
- ((a + b) / 2) * sin(4 * psi) +
- (b / 2) * sin(6 * psi)) /
- psiMax
- );
- }
-
- function inversemapping(psi) {
- return radius(psi) * sin(psi);
- }
-
- var forward = function(lambda, phi) {
- var psi = psiMax * solve(mapping, (M * sin(phi)) / psiMax, phi / pi);
- if (isNaN(psi)) psi = psiMax * sign(phi);
- var kr = k * radius(psi);
- return [((kr * c * lambda) / pi) * cos(psi), (kr / c) * sin(psi)];
- };
-
- forward.invert = function(x, y) {
- var psi = solve(inversemapping, (y * c) / k);
- return [
- (x * pi) / (cos(psi) * k * c * radius(psi)),
- asin((psiMax * mapping(psi / psiMax)) / M)
- ];
- };
-
- if (psiMax === 0) {
- k = sqrt(ratio / pi);
- forward = function(lambda, phi) {
- return [lambda * k, sin(phi) / k];
- };
- forward.invert = function(x, y) {
- return [x / k, asin(y * k)];
- };
- }
-
- return forward;
- }
-
- function hufnagel() {
- var a = 1,
- b = 0,
- psiMax = 45 * radians,
- ratio = 2,
- mutate = d3Geo.geoProjectionMutator(hufnagelRaw),
- projection = mutate(a, b, psiMax, ratio);
-
- projection.a = function(_) {
- return arguments.length ? mutate((a = +_), b, psiMax, ratio) : a;
- };
- projection.b = function(_) {
- return arguments.length ? mutate(a, (b = +_), psiMax, ratio) : b;
- };
- projection.psiMax = function(_) {
- return arguments.length
- ? mutate(a, b, (psiMax = +_ * radians), ratio)
- : psiMax * degrees;
- };
- projection.ratio = function(_) {
- return arguments.length ? mutate(a, b, psiMax, (ratio = +_)) : ratio;
- };
-
- return projection.scale(180.739);
- }
-
- // https://github.com/scijs/integrate-adaptive-simpson
-
- // This algorithm adapted from pseudocode in:
- // http://www.math.utk.edu/~ccollins/refs/Handouts/rich.pdf
- function adsimp (f, a, b, fa, fm, fb, V0, tol, maxdepth, depth, state) {
- if (state.nanEncountered) {
- return NaN;
- }
-
- var h, f1, f2, sl, sr, s2, m, V1, V2, err;
-
- h = b - a;
- f1 = f(a + h * 0.25);
- f2 = f(b - h * 0.25);
-
- // Simple check for NaN:
- if (isNaN(f1)) {
- state.nanEncountered = true;
- return;
- }
-
- // Simple check for NaN:
- if (isNaN(f2)) {
- state.nanEncountered = true;
- return;
- }
-
- sl = h * (fa + 4 * f1 + fm) / 12;
- sr = h * (fm + 4 * f2 + fb) / 12;
- s2 = sl + sr;
- err = (s2 - V0) / 15;
-
- if (depth > maxdepth) {
- state.maxDepthCount++;
- return s2 + err;
- } else if (Math.abs(err) < tol) {
- return s2 + err;
- } else {
- m = a + h * 0.5;
-
- V1 = adsimp(f, a, m, fa, f1, fm, sl, tol * 0.5, maxdepth, depth + 1, state);
-
- if (isNaN(V1)) {
- state.nanEncountered = true;
- return NaN;
- }
-
- V2 = adsimp(f, m, b, fm, f2, fb, sr, tol * 0.5, maxdepth, depth + 1, state);
-
- if (isNaN(V2)) {
- state.nanEncountered = true;
- return NaN;
- }
-
- return V1 + V2;
- }
- }
-
- function integrate (f, a, b, tol, maxdepth) {
- var state = {
- maxDepthCount: 0,
- nanEncountered: false
- };
-
- if (tol === undefined) {
- tol = 1e-8;
- }
- if (maxdepth === undefined) {
- maxdepth = 20;
- }
-
- var fa = f(a);
- var fm = f(0.5 * (a + b));
- var fb = f(b);
-
- var V0 = (fa + 4 * fm + fb) * (b - a) / 6;
-
- var result = adsimp(f, a, b, fa, fm, fb, V0, tol, maxdepth, 1, state);
-
- /*
- if (state.maxDepthCount > 0 && console && console.warn) {
- console.warn('integrate-adaptive-simpson: Warning: maximum recursion depth (' + maxdepth + ') reached ' + state.maxDepthCount + ' times');
- }
-
- if (state.nanEncountered && console && console.warn) {
- console.warn('integrate-adaptive-simpson: Warning: NaN encountered. Halting early.');
- }
- */
-
- return result;
- }
-
- function hyperellipticalRaw(alpha, k, gamma) {
-
- function elliptic (f) {
- return alpha + (1 - alpha) * pow(1 - pow(f, k), 1 / k);
- }
-
- function z(f) {
- return integrate(elliptic, 0, f, 1e-4);
- }
-
- var G = 1 / z(1),
- n = 1000,
- m = (1 + 1e-8) * G,
- approx = [];
- for (var i = 0; i <= n; i++)
- approx.push(z(i / n) * m);
-
- function Y(sinphi) {
- var rmin = 0, rmax = n, r = n >> 1;
- do {
- if (approx[r] > sinphi) rmax = r; else rmin = r;
- r = (rmin + rmax) >> 1;
- } while (r > rmin);
- var u = approx[r + 1] - approx[r];
- if (u) u = (sinphi - approx[r + 1]) / u;
- return (r + 1 + u) / n;
- }
-
- var ratio = 2 * Y(1) / pi * G / gamma;
-
- var forward = function(lambda, phi) {
- var y = Y(abs(sin(phi))),
- x = elliptic(y) * lambda;
- y /= ratio;
- return [ x, (phi >= 0) ? y : -y ];
- };
-
- forward.invert = function(x, y) {
- var phi;
- y *= ratio;
- if (abs(y) < 1) phi = sign(y) * asin(z(abs(y)) * G);
- return [ x / elliptic(abs(y)), phi ];
- };
-
- return forward;
- }
-
- function hyperelliptical() {
- var alpha = 0,
- k = 2.5,
- gamma = 1.183136, // affine = sqrt(2 * gamma / pi) = 0.8679
- m = d3Geo.geoProjectionMutator(hyperellipticalRaw),
- p = m(alpha, k, gamma);
-
- p.alpha = function(_) {
- return arguments.length ? m(alpha = +_, k, gamma) : alpha;
- };
-
- p.k = function(_) {
- return arguments.length ? m(alpha, k = +_, gamma) : k;
- };
-
- p.gamma = function(_) {
- return arguments.length ? m(alpha, k, gamma = +_) : gamma;
- };
-
- return p
- .scale(152.63);
- }
-
- function pointEqual$1(a, b) {
- return abs(a[0] - b[0]) < epsilon$1 && abs(a[1] - b[1]) < epsilon$1;
- }
-
- function interpolateLine(coordinates, m) {
- var i = -1,
- n = coordinates.length,
- p0 = coordinates[0],
- p1,
- dx,
- dy,
- resampled = [];
- while (++i < n) {
- p1 = coordinates[i];
- dx = (p1[0] - p0[0]) / m;
- dy = (p1[1] - p0[1]) / m;
- for (var j = 0; j < m; ++j) resampled.push([p0[0] + j * dx, p0[1] + j * dy]);
- p0 = p1;
- }
- resampled.push(p1);
- return resampled;
- }
-
- function interpolateSphere(lobes) {
- var coordinates = [],
- lobe,
- lambda0, phi0, phi1,
- lambda2, phi2,
- i, n = lobes[0].length;
-
- // Northern Hemisphere
- for (i = 0; i < n; ++i) {
- lobe = lobes[0][i];
- lambda0 = lobe[0][0], phi0 = lobe[0][1], phi1 = lobe[1][1];
- lambda2 = lobe[2][0], phi2 = lobe[2][1];
- coordinates.push(interpolateLine([
- [lambda0 + epsilon$1, phi0 + epsilon$1],
- [lambda0 + epsilon$1, phi1 - epsilon$1],
- [lambda2 - epsilon$1, phi1 - epsilon$1],
- [lambda2 - epsilon$1, phi2 + epsilon$1]
- ], 30));
- }
-
- // Southern Hemisphere
- for (i = lobes[1].length - 1; i >= 0; --i) {
- lobe = lobes[1][i];
- lambda0 = lobe[0][0], phi0 = lobe[0][1], phi1 = lobe[1][1];
- lambda2 = lobe[2][0], phi2 = lobe[2][1];
- coordinates.push(interpolateLine([
- [lambda2 - epsilon$1, phi2 - epsilon$1],
- [lambda2 - epsilon$1, phi1 + epsilon$1],
- [lambda0 + epsilon$1, phi1 + epsilon$1],
- [lambda0 + epsilon$1, phi0 - epsilon$1]
- ], 30));
- }
-
- return {
- type: "Polygon",
- coordinates: [d3Array.merge(coordinates)]
- };
- }
-
- function interrupt(project, lobes, inverse) {
- var sphere, bounds;
-
- function forward(lambda, phi) {
- var sign = phi < 0 ? -1 : +1, lobe = lobes[+(phi < 0)];
- for (var i = 0, n = lobe.length - 1; i < n && lambda > lobe[i][2][0]; ++i);
- var p = project(lambda - lobe[i][1][0], phi);
- p[0] += project(lobe[i][1][0], sign * phi > sign * lobe[i][0][1] ? lobe[i][0][1] : phi)[0];
- return p;
- }
-
- if (inverse) {
- forward.invert = inverse(forward);
- } else if (project.invert) {
- forward.invert = function(x, y) {
- var bound = bounds[+(y < 0)], lobe = lobes[+(y < 0)];
- for (var i = 0, n = bound.length; i < n; ++i) {
- var b = bound[i];
- if (b[0][0] <= x && x < b[1][0] && b[0][1] <= y && y < b[1][1]) {
- var p = project.invert(x - project(lobe[i][1][0], 0)[0], y);
- p[0] += lobe[i][1][0];
- return pointEqual$1(forward(p[0], p[1]), [x, y]) ? p : null;
- }
- }
- };
- }
-
- var p = d3Geo.geoProjection(forward),
- stream_ = p.stream;
-
- p.stream = function(stream) {
- var rotate = p.rotate(),
- rotateStream = stream_(stream),
- sphereStream = (p.rotate([0, 0]), stream_(stream));
- p.rotate(rotate);
- rotateStream.sphere = function() { d3Geo.geoStream(sphere, sphereStream); };
- return rotateStream;
- };
-
- p.lobes = function(_) {
- if (!arguments.length) return lobes.map(function(lobe) {
- return lobe.map(function(l) {
- return [
- [l[0][0] * degrees, l[0][1] * degrees],
- [l[1][0] * degrees, l[1][1] * degrees],
- [l[2][0] * degrees, l[2][1] * degrees]
- ];
- });
- });
-
- sphere = interpolateSphere(_);
-
- lobes = _.map(function(lobe) {
- return lobe.map(function(l) {
- return [
- [l[0][0] * radians, l[0][1] * radians],
- [l[1][0] * radians, l[1][1] * radians],
- [l[2][0] * radians, l[2][1] * radians]
- ];
- });
- });
-
- bounds = lobes.map(function(lobe) {
- return lobe.map(function(l) {
- var x0 = project(l[0][0], l[0][1])[0],
- x1 = project(l[2][0], l[2][1])[0],
- y0 = project(l[1][0], l[0][1])[1],
- y1 = project(l[1][0], l[1][1])[1],
- t;
- if (y0 > y1) t = y0, y0 = y1, y1 = t;
- return [[x0, y0], [x1, y1]];
- });
- });
-
- return p;
- };
-
- if (lobes != null) p.lobes(lobes);
-
- return p;
- }
-
- var lobes$6 = [[ // northern hemisphere
- [[-180, 0], [-100, 90], [ -40, 0]],
- [[ -40, 0], [ 30, 90], [ 180, 0]]
- ], [ // southern hemisphere
- [[-180, 0], [-160, -90], [-100, 0]],
- [[-100, 0], [ -60, -90], [ -20, 0]],
- [[ -20, 0], [ 20, -90], [ 80, 0]],
- [[ 80, 0], [ 140, -90], [ 180, 0]]
- ]];
-
- function boggs() {
- return interrupt(boggsRaw, lobes$6)
- .scale(160.857);
- }
-
- var lobes$5 = [[ // northern hemisphere
- [[-180, 0], [-100, 90], [ -40, 0]],
- [[ -40, 0], [ 30, 90], [ 180, 0]]
- ], [ // southern hemisphere
- [[-180, 0], [-160, -90], [-100, 0]],
- [[-100, 0], [ -60, -90], [ -20, 0]],
- [[ -20, 0], [ 20, -90], [ 80, 0]],
- [[ 80, 0], [ 140, -90], [ 180, 0]]
- ]];
-
- function homolosine() {
- return interrupt(homolosineRaw, lobes$5)
- .scale(152.63);
- }
-
- var lobes$4 = [[ // northern hemisphere
- [[-180, 0], [-100, 90], [ -40, 0]],
- [[ -40, 0], [ 30, 90], [ 180, 0]]
- ], [ // southern hemisphere
- [[-180, 0], [-160, -90], [-100, 0]],
- [[-100, 0], [ -60, -90], [ -20, 0]],
- [[ -20, 0], [ 20, -90], [ 80, 0]],
- [[ 80, 0], [ 140, -90], [ 180, 0]]
- ]];
-
- function mollweide() {
- return interrupt(mollweideRaw, lobes$4)
- .scale(169.529);
- }
-
- var lobes$3 = [[ // northern hemisphere
- [[-180, 0], [ -90, 90], [ 0, 0]],
- [[ 0, 0], [ 90, 90], [ 180, 0]]
- ], [ // southern hemisphere
- [[-180, 0], [ -90, -90], [ 0, 0]],
- [[ 0, 0], [ 90, -90], [ 180, 0]]
- ]];
-
- function mollweideHemispheres() {
- return interrupt(mollweideRaw, lobes$3)
- .scale(169.529)
- .rotate([20, 0]);
- }
-
- var lobes$2 = [[ // northern hemisphere
- [[-180, 35], [ -30, 90], [ 0, 35]],
- [[ 0, 35], [ 30, 90], [ 180, 35]]
- ], [ // southern hemisphere
- [[-180, -10], [-102, -90], [ -65, -10]],
- [[ -65, -10], [ 5, -90], [ 77, -10]],
- [[ 77, -10], [ 103, -90], [ 180, -10]]
- ]];
-
- function sinuMollweide() {
- return interrupt(sinuMollweideRaw, lobes$2, solve2d)
- .rotate([-20, -55])
- .scale(164.263)
- .center([0, -5.4036]);
- }
-
- var lobes$1 = [[ // northern hemisphere
- [[-180, 0], [-110, 90], [ -40, 0]],
- [[ -40, 0], [ 0, 90], [ 40, 0]],
- [[ 40, 0], [ 110, 90], [ 180, 0]]
- ], [ // southern hemisphere
- [[-180, 0], [-110, -90], [ -40, 0]],
- [[ -40, 0], [ 0, -90], [ 40, 0]],
- [[ 40, 0], [ 110, -90], [ 180, 0]]
- ]];
-
- function sinusoidal() {
- return interrupt(sinusoidalRaw, lobes$1)
- .scale(152.63)
- .rotate([-20, 0]);
- }
-
- function kavrayskiy7Raw(lambda, phi) {
- return [3 / tau * lambda * sqrt(pi * pi / 3 - phi * phi), phi];
- }
-
- kavrayskiy7Raw.invert = function(x, y) {
- return [tau / 3 * x / sqrt(pi * pi / 3 - y * y), y];
- };
-
- function kavrayskiy7() {
- return d3Geo.geoProjection(kavrayskiy7Raw)
- .scale(158.837);
- }
-
- function lagrangeRaw(n) {
-
- function forward(lambda, phi) {
- if (abs(abs(phi) - halfPi) < epsilon$1) return [0, phi < 0 ? -2 : 2];
- var sinPhi = sin(phi),
- v = pow((1 + sinPhi) / (1 - sinPhi), n / 2),
- c = 0.5 * (v + 1 / v) + cos(lambda *= n);
- return [
- 2 * sin(lambda) / c,
- (v - 1 / v) / c
- ];
- }
-
- forward.invert = function(x, y) {
- var y0 = abs(y);
- if (abs(y0 - 2) < epsilon$1) return x ? null : [0, sign(y) * halfPi];
- if (y0 > 2) return null;
-
- x /= 2, y /= 2;
- var x2 = x * x,
- y2 = y * y,
- t = 2 * y / (1 + x2 + y2); // tanh(nPhi)
- t = pow((1 + t) / (1 - t), 1 / n);
- return [
- atan2(2 * x, 1 - x2 - y2) / n,
- asin((t - 1) / (t + 1))
- ];
- };
-
- return forward;
- }
-
- function lagrange() {
- var n = 0.5,
- m = d3Geo.geoProjectionMutator(lagrangeRaw),
- p = m(n);
-
- p.spacing = function(_) {
- return arguments.length ? m(n = +_) : n;
- };
-
- return p
- .scale(124.75);
- }
-
- var pi_sqrt2 = pi / sqrt2;
-
- function larriveeRaw(lambda, phi) {
- return [
- lambda * (1 + sqrt(cos(phi))) / 2,
- phi / (cos(phi / 2) * cos(lambda / 6))
- ];
- }
-
- larriveeRaw.invert = function(x, y) {
- var x0 = abs(x),
- y0 = abs(y),
- lambda = epsilon$1,
- phi = halfPi;
- if (y0 < pi_sqrt2) phi *= y0 / pi_sqrt2;
- else lambda += 6 * acos(pi_sqrt2 / y0);
- for (var i = 0; i < 25; i++) {
- var sinPhi = sin(phi),
- sqrtcosPhi = sqrt(cos(phi)),
- sinPhi_2 = sin(phi / 2),
- cosPhi_2 = cos(phi / 2),
- sinLambda_6 = sin(lambda / 6),
- cosLambda_6 = cos(lambda / 6),
- f0 = 0.5 * lambda * (1 + sqrtcosPhi) - x0,
- f1 = phi / (cosPhi_2 * cosLambda_6) - y0,
- df0dPhi = sqrtcosPhi ? -0.25 * lambda * sinPhi / sqrtcosPhi : 0,
- df0dLambda = 0.5 * (1 + sqrtcosPhi),
- df1dPhi = (1 + 0.5 * phi * sinPhi_2 / cosPhi_2) / (cosPhi_2 * cosLambda_6),
- df1dLambda = (phi / cosPhi_2) * (sinLambda_6 / 6) / (cosLambda_6 * cosLambda_6),
- denom = df0dPhi * df1dLambda - df1dPhi * df0dLambda,
- dPhi = (f0 * df1dLambda - f1 * df0dLambda) / denom,
- dLambda = (f1 * df0dPhi - f0 * df1dPhi) / denom;
- phi -= dPhi;
- lambda -= dLambda;
- if (abs(dPhi) < epsilon$1 && abs(dLambda) < epsilon$1) break;
- }
- return [x < 0 ? -lambda : lambda, y < 0 ? -phi : phi];
- };
-
- function larrivee() {
- return d3Geo.geoProjection(larriveeRaw)
- .scale(97.2672);
- }
-
- function laskowskiRaw(lambda, phi) {
- var lambda2 = lambda * lambda, phi2 = phi * phi;
- return [
- lambda * (0.975534 + phi2 * (-0.119161 + lambda2 * -0.0143059 + phi2 * -0.0547009)),
- phi * (1.00384 + lambda2 * (0.0802894 + phi2 * -0.02855 + lambda2 * 0.000199025) + phi2 * (0.0998909 + phi2 * -0.0491032))
- ];
- }
-
- laskowskiRaw.invert = function(x, y) {
- var lambda = sign(x) * pi,
- phi = y / 2,
- i = 50;
- do {
- var lambda2 = lambda * lambda,
- phi2 = phi * phi,
- lambdaPhi = lambda * phi,
- fx = lambda * (0.975534 + phi2 * (-0.119161 + lambda2 * -0.0143059 + phi2 * -0.0547009)) - x,
- fy = phi * (1.00384 + lambda2 * (0.0802894 + phi2 * -0.02855 + lambda2 * 0.000199025) + phi2 * (0.0998909 + phi2 * -0.0491032)) - y,
- deltaxDeltaLambda = 0.975534 - phi2 * (0.119161 + 3 * lambda2 * 0.0143059 + phi2 * 0.0547009),
- deltaxDeltaPhi = -lambdaPhi * (2 * 0.119161 + 4 * 0.0547009 * phi2 + 2 * 0.0143059 * lambda2),
- deltayDeltaLambda = lambdaPhi * (2 * 0.0802894 + 4 * 0.000199025 * lambda2 + 2 * -0.02855 * phi2),
- deltayDeltaPhi = 1.00384 + lambda2 * (0.0802894 + 0.000199025 * lambda2) + phi2 * (3 * (0.0998909 - 0.02855 * lambda2) - 5 * 0.0491032 * phi2),
- denominator = deltaxDeltaPhi * deltayDeltaLambda - deltayDeltaPhi * deltaxDeltaLambda,
- deltaLambda = (fy * deltaxDeltaPhi - fx * deltayDeltaPhi) / denominator,
- deltaPhi = (fx * deltayDeltaLambda - fy * deltaxDeltaLambda) / denominator;
- lambda -= deltaLambda, phi -= deltaPhi;
- } while ((abs(deltaLambda) > epsilon$1 || abs(deltaPhi) > epsilon$1) && --i > 0);
- return i && [lambda, phi];
- };
-
- function laskowski() {
- return d3Geo.geoProjection(laskowskiRaw)
- .scale(139.98);
- }
-
- function littrowRaw(lambda, phi) {
- return [
- sin(lambda) / cos(phi),
- tan(phi) * cos(lambda)
- ];
- }
-
- littrowRaw.invert = function(x, y) {
- var x2 = x * x,
- y2 = y * y,
- y2_1 = y2 + 1,
- x2_y2_1 = x2 + y2_1,
- cosPhi = x
- ? sqrt1_2 * sqrt((x2_y2_1 - sqrt(x2_y2_1 * x2_y2_1 - 4 * x2)) / x2)
- : 1 / sqrt(y2_1);
- return [
- asin(x * cosPhi),
- sign(y) * acos(cosPhi)
- ];
- };
-
- function littrow() {
- return d3Geo.geoProjection(littrowRaw)
- .scale(144.049)
- .clipAngle(90 - 1e-3);
- }
-
- function loximuthalRaw(phi0) {
- var cosPhi0 = cos(phi0),
- tanPhi0 = tan(quarterPi + phi0 / 2);
-
- function forward(lambda, phi) {
- var y = phi - phi0,
- x = abs(y) < epsilon$1 ? lambda * cosPhi0
- : abs(x = quarterPi + phi / 2) < epsilon$1 || abs(abs(x) - halfPi) < epsilon$1
- ? 0 : lambda * y / log(tan(x) / tanPhi0);
- return [x, y];
- }
-
- forward.invert = function(x, y) {
- var lambda,
- phi = y + phi0;
- return [
- abs(y) < epsilon$1 ? x / cosPhi0
- : (abs(lambda = quarterPi + phi / 2) < epsilon$1 || abs(abs(lambda) - halfPi) < epsilon$1) ? 0
- : x * log(tan(lambda) / tanPhi0) / y,
- phi
- ];
- };
-
- return forward;
- }
-
- function loximuthal() {
- return parallel1(loximuthalRaw)
- .parallel(40)
- .scale(158.837);
- }
-
- function millerRaw(lambda, phi) {
- return [lambda, 1.25 * log(tan(quarterPi + 0.4 * phi))];
- }
-
- millerRaw.invert = function(x, y) {
- return [x, 2.5 * atan(exp(0.8 * y)) - 0.625 * pi];
- };
-
- function miller$1() {
- return d3Geo.geoProjection(millerRaw)
- .scale(108.318);
- }
-
- function modifiedStereographicRaw(C) {
- var m = C.length - 1;
-
- function forward(lambda, phi) {
- var cosPhi = cos(phi),
- k = 2 / (1 + cosPhi * cos(lambda)),
- zr = k * cosPhi * sin(lambda),
- zi = k * sin(phi),
- i = m,
- w = C[i],
- ar = w[0],
- ai = w[1],
- t;
- while (--i >= 0) {
- w = C[i];
- ar = w[0] + zr * (t = ar) - zi * ai;
- ai = w[1] + zr * ai + zi * t;
- }
- ar = zr * (t = ar) - zi * ai;
- ai = zr * ai + zi * t;
- return [ar, ai];
- }
-
- forward.invert = function(x, y) {
- var i = 20,
- zr = x,
- zi = y;
- do {
- var j = m,
- w = C[j],
- ar = w[0],
- ai = w[1],
- br = 0,
- bi = 0,
- t;
-
- while (--j >= 0) {
- w = C[j];
- br = ar + zr * (t = br) - zi * bi;
- bi = ai + zr * bi + zi * t;
- ar = w[0] + zr * (t = ar) - zi * ai;
- ai = w[1] + zr * ai + zi * t;
- }
- br = ar + zr * (t = br) - zi * bi;
- bi = ai + zr * bi + zi * t;
- ar = zr * (t = ar) - zi * ai - x;
- ai = zr * ai + zi * t - y;
-
- var denominator = br * br + bi * bi, deltar, deltai;
- zr -= deltar = (ar * br + ai * bi) / denominator;
- zi -= deltai = (ai * br - ar * bi) / denominator;
- } while (abs(deltar) + abs(deltai) > epsilon$1 * epsilon$1 && --i > 0);
-
- if (i) {
- var rho = sqrt(zr * zr + zi * zi),
- c = 2 * atan(rho * 0.5),
- sinc = sin(c);
- return [atan2(zr * sinc, rho * cos(c)), rho ? asin(zi * sinc / rho) : 0];
- }
- };
-
- return forward;
- }
-
- var alaska = [[0.9972523, 0], [0.0052513, -0.0041175], [0.0074606, 0.0048125], [-0.0153783, -0.1968253], [0.0636871, -0.1408027], [0.3660976, -0.2937382]],
- gs48 = [[0.98879, 0], [0, 0], [-0.050909, 0], [0, 0], [0.075528, 0]],
- gs50 = [[0.9842990, 0], [0.0211642, 0.0037608], [-0.1036018, -0.0575102], [-0.0329095, -0.0320119], [0.0499471, 0.1223335], [0.0260460, 0.0899805], [0.0007388, -0.1435792], [0.0075848, -0.1334108], [-0.0216473, 0.0776645], [-0.0225161, 0.0853673]],
- miller = [[0.9245, 0], [0, 0], [0.01943, 0]],
- lee = [[0.721316, 0], [0, 0], [-0.00881625, -0.00617325]];
-
- function modifiedStereographicAlaska() {
- return modifiedStereographic(alaska, [152, -64])
- .scale(1400)
- .center([-160.908, 62.4864])
- .clipAngle(30)
- .angle(7.8);
- }
-
- function modifiedStereographicGs48() {
- return modifiedStereographic(gs48, [95, -38])
- .scale(1000)
- .clipAngle(55)
- .center([-96.5563, 38.8675]);
- }
-
- function modifiedStereographicGs50() {
- return modifiedStereographic(gs50, [120, -45])
- .scale(359.513)
- .clipAngle(55)
- .center([-117.474, 53.0628]);
- }
-
- function modifiedStereographicMiller() {
- return modifiedStereographic(miller, [-20, -18])
- .scale(209.091)
- .center([20, 16.7214])
- .clipAngle(82);
- }
-
- function modifiedStereographicLee() {
- return modifiedStereographic(lee, [165, 10])
- .scale(250)
- .clipAngle(130)
- .center([-165, -10]);
- }
-
- function modifiedStereographic(coefficients, rotate) {
- var p = d3Geo.geoProjection(modifiedStereographicRaw(coefficients)).rotate(rotate).clipAngle(90),
- r = d3Geo.geoRotation(rotate),
- center = p.center;
-
- delete p.rotate;
-
- p.center = function(_) {
- return arguments.length ? center(r(_)) : r.invert(center());
- };
-
- return p;
- }
-
- var sqrt6 = sqrt(6),
- sqrt7 = sqrt(7);
-
- function mtFlatPolarParabolicRaw(lambda, phi) {
- var theta = asin(7 * sin(phi) / (3 * sqrt6));
- return [
- sqrt6 * lambda * (2 * cos(2 * theta / 3) - 1) / sqrt7,
- 9 * sin(theta / 3) / sqrt7
- ];
- }
-
- mtFlatPolarParabolicRaw.invert = function(x, y) {
- var theta = 3 * asin(y * sqrt7 / 9);
- return [
- x * sqrt7 / (sqrt6 * (2 * cos(2 * theta / 3) - 1)),
- asin(sin(theta) * 3 * sqrt6 / 7)
- ];
- };
-
- function mtFlatPolarParabolic() {
- return d3Geo.geoProjection(mtFlatPolarParabolicRaw)
- .scale(164.859);
- }
-
- function mtFlatPolarQuarticRaw(lambda, phi) {
- var k = (1 + sqrt1_2) * sin(phi),
- theta = phi;
- for (var i = 0, delta; i < 25; i++) {
- theta -= delta = (sin(theta / 2) + sin(theta) - k) / (0.5 * cos(theta / 2) + cos(theta));
- if (abs(delta) < epsilon$1) break;
- }
- return [
- lambda * (1 + 2 * cos(theta) / cos(theta / 2)) / (3 * sqrt2),
- 2 * sqrt(3) * sin(theta / 2) / sqrt(2 + sqrt2)
- ];
- }
-
- mtFlatPolarQuarticRaw.invert = function(x, y) {
- var sinTheta_2 = y * sqrt(2 + sqrt2) / (2 * sqrt(3)),
- theta = 2 * asin(sinTheta_2);
- return [
- 3 * sqrt2 * x / (1 + 2 * cos(theta) / cos(theta / 2)),
- asin((sinTheta_2 + sin(theta)) / (1 + sqrt1_2))
- ];
- };
-
- function mtFlatPolarQuartic() {
- return d3Geo.geoProjection(mtFlatPolarQuarticRaw)
- .scale(188.209);
- }
-
- function mtFlatPolarSinusoidalRaw(lambda, phi) {
- var A = sqrt(6 / (4 + pi)),
- k = (1 + pi / 4) * sin(phi),
- theta = phi / 2;
- for (var i = 0, delta; i < 25; i++) {
- theta -= delta = (theta / 2 + sin(theta) - k) / (0.5 + cos(theta));
- if (abs(delta) < epsilon$1) break;
- }
- return [
- A * (0.5 + cos(theta)) * lambda / 1.5,
- A * theta
- ];
- }
-
- mtFlatPolarSinusoidalRaw.invert = function(x, y) {
- var A = sqrt(6 / (4 + pi)),
- theta = y / A;
- if (abs(abs(theta) - halfPi) < epsilon$1) theta = theta < 0 ? -halfPi : halfPi;
- return [
- 1.5 * x / (A * (0.5 + cos(theta))),
- asin((theta / 2 + sin(theta)) / (1 + pi / 4))
- ];
- };
-
- function mtFlatPolarSinusoidal() {
- return d3Geo.geoProjection(mtFlatPolarSinusoidalRaw)
- .scale(166.518);
- }
-
- function naturalEarth2Raw(lambda, phi) {
- var phi2 = phi * phi, phi4 = phi2 * phi2, phi6 = phi2 * phi4;
- return [
- lambda * (0.84719 - 0.13063 * phi2 + phi6 * phi6 * (-0.04515 + 0.05494 * phi2 - 0.02326 * phi4 + 0.00331 * phi6)),
- phi * (1.01183 + phi4 * phi4 * (-0.02625 + 0.01926 * phi2 - 0.00396 * phi4))
- ];
- }
-
- naturalEarth2Raw.invert = function(x, y) {
- var phi = y, i = 25, delta, phi2, phi4, phi6;
- do {
- phi2 = phi * phi; phi4 = phi2 * phi2;
- phi -= delta = ((phi * (1.01183 + phi4 * phi4 * (-0.02625 + 0.01926 * phi2 - 0.00396 * phi4))) - y) /
- (1.01183 + phi4 * phi4 * ((9 * -0.02625) + (11 * 0.01926) * phi2 + (13 * -0.00396) * phi4));
- } while (abs(delta) > epsilon2 && --i > 0);
- phi2 = phi * phi; phi4 = phi2 * phi2; phi6 = phi2 * phi4;
- return [
- x / (0.84719 - 0.13063 * phi2 + phi6 * phi6 * (-0.04515 + 0.05494 * phi2 - 0.02326 * phi4 + 0.00331 * phi6)),
- phi
- ];
- };
-
- function naturalEarth2() {
- return d3Geo.geoProjection(naturalEarth2Raw)
- .scale(175.295);
- }
-
- function nellHammerRaw(lambda, phi) {
- return [
- lambda * (1 + cos(phi)) / 2,
- 2 * (phi - tan(phi / 2))
- ];
- }
-
- nellHammerRaw.invert = function(x, y) {
- var p = y / 2;
- for (var i = 0, delta = Infinity; i < 10 && abs(delta) > epsilon$1; ++i) {
- var c = cos(y / 2);
- y -= delta = (y - tan(y / 2) - p) / (1 - 0.5 / (c * c));
- }
- return [
- 2 * x / (1 + cos(y)),
- y
- ];
- };
-
- function nellHammer() {
- return d3Geo.geoProjection(nellHammerRaw)
- .scale(152.63);
- }
-
- var lobes = [[ // northern hemisphere
- [[-180, 0], [-90, 90], [ 0, 0]],
- [[ 0, 0], [ 90, 90], [ 180, 0]]
- ], [ // southern hemisphere
- [[-180, 0], [-90, -90], [ 0, 0]],
- [[ 0, 0], [ 90, -90], [180, 0]]
- ]];
-
- function quarticAuthalic() {
- return interrupt(hammerRaw(Infinity), lobes)
- .rotate([20, 0])
- .scale(152.63);
- }
-
- // Based on Torben Jansen's implementation
- // https://beta.observablehq.com/@toja/nicolosi-globular-projection
- // https://beta.observablehq.com/@toja/nicolosi-globular-inverse
-
- function nicolosiRaw(lambda, phi) {
- var sinPhi = sin(phi),
- q = cos(phi),
- s = sign(lambda);
-
- if (lambda === 0 || abs(phi) === halfPi) return [0, phi];
- else if (phi === 0) return [lambda, 0];
- else if (abs(lambda) === halfPi) return [lambda * q, halfPi * sinPhi];
-
- var b = pi / (2 * lambda) - (2 * lambda) / pi,
- c = (2 * phi) / pi,
- d = (1 - c * c) / (sinPhi - c);
-
- var b2 = b * b,
- d2 = d * d,
- b2d2 = 1 + b2 / d2,
- d2b2 = 1 + d2 / b2;
-
- var M = ((b * sinPhi) / d - b / 2) / b2d2,
- N = ((d2 * sinPhi) / b2 + d / 2) / d2b2,
- m = M * M + (q * q) / b2d2,
- n = N * N - ((d2 * sinPhi * sinPhi) / b2 + d * sinPhi - 1) / d2b2;
-
- return [
- halfPi * (M + sqrt(m) * s),
- halfPi * (N + sqrt(n < 0 ? 0 : n) * sign(-phi * b) * s)
- ];
- }
-
- nicolosiRaw.invert = function(x, y) {
-
- x /= halfPi;
- y /= halfPi;
-
- var x2 = x * x,
- y2 = y * y,
- x2y2 = x2 + y2,
- pi2 = pi * pi;
-
- return [
- x ? (x2y2 -1 + sqrt((1 - x2y2) * (1 - x2y2) + 4 * x2)) / (2 * x) * halfPi : 0,
- solve(function(phi) {
- return (
- x2y2 * (pi * sin(phi) - 2 * phi) * pi +
- 4 * phi * phi * (y - sin(phi)) +
- 2 * pi * phi -
- pi2 * y
- );
- }, 0)
- ];
- };
-
- function nicolosi() {
- return d3Geo.geoProjection(nicolosiRaw)
- .scale(127.267);
- }
-
- // Based on Java implementation by Bojan Savric.
- // https://github.com/OSUCartography/JMapProjLib/blob/master/src/com/jhlabs/map/proj/PattersonProjection.java
-
- var pattersonK1 = 1.0148,
- pattersonK2 = 0.23185,
- pattersonK3 = -0.14499,
- pattersonK4 = 0.02406,
- pattersonC1 = pattersonK1,
- pattersonC2 = 5 * pattersonK2,
- pattersonC3 = 7 * pattersonK3,
- pattersonC4 = 9 * pattersonK4,
- pattersonYmax = 1.790857183;
-
- function pattersonRaw(lambda, phi) {
- var phi2 = phi * phi;
- return [
- lambda,
- phi * (pattersonK1 + phi2 * phi2 * (pattersonK2 + phi2 * (pattersonK3 + pattersonK4 * phi2)))
- ];
- }
-
- pattersonRaw.invert = function(x, y) {
- if (y > pattersonYmax) y = pattersonYmax;
- else if (y < -pattersonYmax) y = -pattersonYmax;
- var yc = y, delta;
-
- do { // Newton-Raphson
- var y2 = yc * yc;
- yc -= delta = ((yc * (pattersonK1 + y2 * y2 * (pattersonK2 + y2 * (pattersonK3 + pattersonK4 * y2)))) - y) / (pattersonC1 + y2 * y2 * (pattersonC2 + y2 * (pattersonC3 + pattersonC4 * y2)));
- } while (abs(delta) > epsilon$1);
-
- return [x, yc];
- };
-
- function patterson() {
- return d3Geo.geoProjection(pattersonRaw)
- .scale(139.319);
- }
-
- function polyconicRaw(lambda, phi) {
- if (abs(phi) < epsilon$1) return [lambda, 0];
- var tanPhi = tan(phi),
- k = lambda * sin(phi);
- return [
- sin(k) / tanPhi,
- phi + (1 - cos(k)) / tanPhi
- ];
- }
-
- polyconicRaw.invert = function(x, y) {
- if (abs(y) < epsilon$1) return [x, 0];
- var k = x * x + y * y,
- phi = y * 0.5,
- i = 10, delta;
- do {
- var tanPhi = tan(phi),
- secPhi = 1 / cos(phi),
- j = k - 2 * y * phi + phi * phi;
- phi -= delta = (tanPhi * j + 2 * (phi - y)) / (2 + j * secPhi * secPhi + 2 * (phi - y) * tanPhi);
- } while (abs(delta) > epsilon$1 && --i > 0);
- tanPhi = tan(phi);
- return [
- (abs(y) < abs(phi + 1 / tanPhi) ? asin(x * tanPhi) : sign(y) * sign(x) * (acos(abs(x * tanPhi)) + halfPi)) / sin(phi),
- phi
- ];
- };
-
- function polyconic() {
- return d3Geo.geoProjection(polyconicRaw)
- .scale(103.74);
- }
-
- // Note: 6-element arrays are used to denote the 3x3 affine transform matrix:
- // [a, b, c,
- // d, e, f,
- // 0, 0, 1] - this redundant row is left out.
-
- // Transform matrix for [a0, a1] -> [b0, b1].
- function matrix(a, b) {
- var u = subtract(a[1], a[0]),
- v = subtract(b[1], b[0]),
- phi = angle(u, v),
- s = length(u) / length(v);
-
- return multiply([
- 1, 0, a[0][0],
- 0, 1, a[0][1]
- ], multiply([
- s, 0, 0,
- 0, s, 0
- ], multiply([
- cos(phi), sin(phi), 0,
- -sin(phi), cos(phi), 0
- ], [
- 1, 0, -b[0][0],
- 0, 1, -b[0][1]
- ])));
- }
-
- // Inverts a transform matrix.
- function inverse(m) {
- var k = 1 / (m[0] * m[4] - m[1] * m[3]);
- return [
- k * m[4], -k * m[1], k * (m[1] * m[5] - m[2] * m[4]),
- -k * m[3], k * m[0], k * (m[2] * m[3] - m[0] * m[5])
- ];
- }
-
- // Multiplies two 3x2 matrices.
- function multiply(a, b) {
- return [
- a[0] * b[0] + a[1] * b[3],
- a[0] * b[1] + a[1] * b[4],
- a[0] * b[2] + a[1] * b[5] + a[2],
- a[3] * b[0] + a[4] * b[3],
- a[3] * b[1] + a[4] * b[4],
- a[3] * b[2] + a[4] * b[5] + a[5]
- ];
- }
-
- // Subtracts 2D vectors.
- function subtract(a, b) {
- return [a[0] - b[0], a[1] - b[1]];
- }
-
- // Magnitude of a 2D vector.
- function length(v) {
- return sqrt(v[0] * v[0] + v[1] * v[1]);
- }
-
- // Angle between two 2D vectors.
- function angle(a, b) {
- return atan2(a[0] * b[1] - a[1] * b[0], a[0] * b[0] + a[1] * b[1]);
- }
-
- // Creates a polyhedral projection.
- // * root: a spanning tree of polygon faces. Nodes are automatically
- // augmented with a transform matrix.
- // * face: a function that returns the appropriate node for a given {lambda, phi}
- // point (radians).
- function polyhedral(root, face) {
-
- recurse(root, {transform: null});
-
- function recurse(node, parent) {
- node.edges = faceEdges(node.face);
- // Find shared edge.
- if (parent.face) {
- var shared = node.shared = sharedEdge(node.face, parent.face),
- m = matrix(shared.map(parent.project), shared.map(node.project));
- node.transform = parent.transform ? multiply(parent.transform, m) : m;
- // Replace shared edge in parent edges array.
- var edges = parent.edges;
- for (var i = 0, n = edges.length; i < n; ++i) {
- if (pointEqual(shared[0], edges[i][1]) && pointEqual(shared[1], edges[i][0])) edges[i] = node;
- if (pointEqual(shared[0], edges[i][0]) && pointEqual(shared[1], edges[i][1])) edges[i] = node;
- }
- edges = node.edges;
- for (i = 0, n = edges.length; i < n; ++i) {
- if (pointEqual(shared[0], edges[i][0]) && pointEqual(shared[1], edges[i][1])) edges[i] = parent;
- if (pointEqual(shared[0], edges[i][1]) && pointEqual(shared[1], edges[i][0])) edges[i] = parent;
- }
- } else {
- node.transform = parent.transform;
- }
- if (node.children) {
- node.children.forEach(function(child) {
- recurse(child, node);
- });
- }
- return node;
- }
-
- function forward(lambda, phi) {
- var node = face(lambda, phi),
- point = node.project([lambda * degrees, phi * degrees]),
- t;
- if (t = node.transform) {
- return [
- t[0] * point[0] + t[1] * point[1] + t[2],
- -(t[3] * point[0] + t[4] * point[1] + t[5])
- ];
- }
- point[1] = -point[1];
- return point;
- }
-
- // Naive inverse! A faster solution would use bounding boxes, or even a
- // polygonal quadtree.
- if (hasInverse(root)) forward.invert = function(x, y) {
- var coordinates = faceInvert(root, [x, -y]);
- return coordinates && (coordinates[0] *= radians, coordinates[1] *= radians, coordinates);
- };
-
- function faceInvert(node, coordinates) {
- var invert = node.project.invert,
- t = node.transform,
- point = coordinates;
- if (t) {
- t = inverse(t);
- point = [
- t[0] * point[0] + t[1] * point[1] + t[2],
- (t[3] * point[0] + t[4] * point[1] + t[5])
- ];
- }
- if (invert && node === faceDegrees(p = invert(point))) return p;
- var p,
- children = node.children;
- for (var i = 0, n = children && children.length; i < n; ++i) {
- if (p = faceInvert(children[i], coordinates)) return p;
- }
- }
-
- function faceDegrees(coordinates) {
- return face(coordinates[0] * radians, coordinates[1] * radians);
- }
-
- var proj = d3Geo.geoProjection(forward),
- stream_ = proj.stream;
-
- proj.stream = function(stream) {
- var rotate = proj.rotate(),
- rotateStream = stream_(stream),
- sphereStream = (proj.rotate([0, 0]), stream_(stream));
- proj.rotate(rotate);
- rotateStream.sphere = function() {
- sphereStream.polygonStart();
- sphereStream.lineStart();
- outline(sphereStream, root);
- sphereStream.lineEnd();
- sphereStream.polygonEnd();
- };
- return rotateStream;
- };
-
- return proj.angle(-30);
- }
-
- function outline(stream, node, parent) {
- var point,
- edges = node.edges,
- n = edges.length,
- edge,
- multiPoint = {type: "MultiPoint", coordinates: node.face},
- notPoles = node.face.filter(function(d) { return abs(d[1]) !== 90; }),
- b = d3Geo.geoBounds({type: "MultiPoint", coordinates: notPoles}),
- inside = false,
- j = -1,
- dx = b[1][0] - b[0][0];
- // TODO
- var c = dx === 180 || dx === 360
- ? [(b[0][0] + b[1][0]) / 2, (b[0][1] + b[1][1]) / 2]
- : d3Geo.geoCentroid(multiPoint);
- // First find the shared edge…
- if (parent) while (++j < n) {
- if (edges[j] === parent) break;
- }
- ++j;
- for (var i = 0; i < n; ++i) {
- edge = edges[(i + j) % n];
- if (Array.isArray(edge)) {
- if (!inside) {
- stream.point((point = d3Geo.geoInterpolate(edge[0], c)(epsilon$1))[0], point[1]);
- inside = true;
- }
- stream.point((point = d3Geo.geoInterpolate(edge[1], c)(epsilon$1))[0], point[1]);
- } else {
- inside = false;
- if (edge !== parent) outline(stream, edge, node);
- }
- }
- }
-
- // Tests equality of two spherical points.
- function pointEqual(a, b) {
- return a && b && a[0] === b[0] && a[1] === b[1];
- }
-
- // Finds a shared edge given two clockwise polygons.
- function sharedEdge(a, b) {
- var x, y, n = a.length, found = null;
- for (var i = 0; i < n; ++i) {
- x = a[i];
- for (var j = b.length; --j >= 0;) {
- y = b[j];
- if (x[0] === y[0] && x[1] === y[1]) {
- if (found) return [found, x];
- found = x;
- }
- }
- }
- }
-
- // Converts an array of n face vertices to an array of n + 1 edges.
- function faceEdges(face) {
- var n = face.length,
- edges = [];
- for (var a = face[n - 1], i = 0; i < n; ++i) edges.push([a, a = face[i]]);
- return edges;
- }
-
- function hasInverse(node) {
- return node.project.invert || node.children && node.children.some(hasInverse);
- }
-
- // TODO generate on-the-fly to avoid external modification.
- var octahedron = [
- [0, 90],
- [-90, 0], [0, 0], [90, 0], [180, 0],
- [0, -90]
- ];
-
- var octahedron$1 = [
- [0, 2, 1],
- [0, 3, 2],
- [5, 1, 2],
- [5, 2, 3],
- [0, 1, 4],
- [0, 4, 3],
- [5, 4, 1],
- [5, 3, 4]
- ].map(function(face) {
- return face.map(function(i) {
- return octahedron[i];
- });
- });
-
- function butterfly(faceProjection) {
-
- faceProjection = faceProjection || function(face) {
- var c = d3Geo.geoCentroid({type: "MultiPoint", coordinates: face});
- return d3Geo.geoGnomonic().scale(1).translate([0, 0]).rotate([-c[0], -c[1]]);
- };
-
- var faces = octahedron$1.map(function(face) {
- return {face: face, project: faceProjection(face)};
- });
-
- [-1, 0, 0, 1, 0, 1, 4, 5].forEach(function(d, i) {
- var node = faces[d];
- node && (node.children || (node.children = [])).push(faces[i]);
- });
-
- return polyhedral(faces[0], function(lambda, phi) {
- return faces[lambda < -pi / 2 ? phi < 0 ? 6 : 4
- : lambda < 0 ? phi < 0 ? 2 : 0
- : lambda < pi / 2 ? phi < 0 ? 3 : 1
- : phi < 0 ? 7 : 5];
- })
- .angle(-30)
- .scale(101.858)
- .center([0, 45]);
- }
-
- var kx = 2 / sqrt(3);
-
- function collignonK(a, b) {
- var p = collignonRaw(a, b);
- return [p[0] * kx, p[1]];
- }
-
- collignonK.invert = function(x,y) {
- return collignonRaw.invert(x / kx, y);
- };
-
- function collignon(faceProjection) {
-
- faceProjection = faceProjection || function(face) {
- var c = d3Geo.geoCentroid({type: "MultiPoint", coordinates: face});
- return d3Geo.geoProjection(collignonK).translate([0, 0]).scale(1).rotate(c[1] > 0 ? [-c[0], 0] : [180 - c[0], 180]);
- };
-
- var faces = octahedron$1.map(function(face) {
- return {face: face, project: faceProjection(face)};
- });
-
- [-1, 0, 0, 1, 0, 1, 4, 5].forEach(function(d, i) {
- var node = faces[d];
- node && (node.children || (node.children = [])).push(faces[i]);
- });
-
- return polyhedral(faces[0], function(lambda, phi) {
- return faces[lambda < -pi / 2 ? phi < 0 ? 6 : 4
- : lambda < 0 ? phi < 0 ? 2 : 0
- : lambda < pi / 2 ? phi < 0 ? 3 : 1
- : phi < 0 ? 7 : 5];
- })
- .angle(-30)
- .scale(121.906)
- .center([0, 48.5904]);
- }
-
- function waterman(faceProjection) {
-
- faceProjection = faceProjection || function(face) {
- var c = face.length === 6 ? d3Geo.geoCentroid({type: "MultiPoint", coordinates: face}) : face[0];
- return d3Geo.geoGnomonic().scale(1).translate([0, 0]).rotate([-c[0], -c[1]]);
- };
-
- var w5 = octahedron$1.map(function(face) {
- var xyz = face.map(cartesian),
- n = xyz.length,
- a = xyz[n - 1],
- b,
- hexagon = [];
- for (var i = 0; i < n; ++i) {
- b = xyz[i];
- hexagon.push(spherical([
- a[0] * 0.9486832980505138 + b[0] * 0.31622776601683794,
- a[1] * 0.9486832980505138 + b[1] * 0.31622776601683794,
- a[2] * 0.9486832980505138 + b[2] * 0.31622776601683794
- ]), spherical([
- b[0] * 0.9486832980505138 + a[0] * 0.31622776601683794,
- b[1] * 0.9486832980505138 + a[1] * 0.31622776601683794,
- b[2] * 0.9486832980505138 + a[2] * 0.31622776601683794
- ]));
- a = b;
- }
- return hexagon;
- });
-
- var cornerNormals = [];
-
- var parents = [-1, 0, 0, 1, 0, 1, 4, 5];
-
- w5.forEach(function(hexagon, j) {
- var face = octahedron$1[j],
- n = face.length,
- normals = cornerNormals[j] = [];
- for (var i = 0; i < n; ++i) {
- w5.push([
- face[i],
- hexagon[(i * 2 + 2) % (2 * n)],
- hexagon[(i * 2 + 1) % (2 * n)]
- ]);
- parents.push(j);
- normals.push(cross(
- cartesian(hexagon[(i * 2 + 2) % (2 * n)]),
- cartesian(hexagon[(i * 2 + 1) % (2 * n)])
- ));
- }
- });
-
- var faces = w5.map(function(face) {
- return {
- project: faceProjection(face),
- face: face
- };
- });
-
- parents.forEach(function(d, i) {
- var parent = faces[d];
- parent && (parent.children || (parent.children = [])).push(faces[i]);
- });
-
- function face(lambda, phi) {
- var cosphi = cos(phi),
- p = [cosphi * cos(lambda), cosphi * sin(lambda), sin(phi)];
-
- var hexagon = lambda < -pi / 2 ? phi < 0 ? 6 : 4
- : lambda < 0 ? phi < 0 ? 2 : 0
- : lambda < pi / 2 ? phi < 0 ? 3 : 1
- : phi < 0 ? 7 : 5;
-
- var n = cornerNormals[hexagon];
-
- return faces[dot(n[0], p) < 0 ? 8 + 3 * hexagon
- : dot(n[1], p) < 0 ? 8 + 3 * hexagon + 1
- : dot(n[2], p) < 0 ? 8 + 3 * hexagon + 2
- : hexagon];
- }
-
- return polyhedral(faces[0], face)
- .angle(-30)
- .scale(110.625)
- .center([0,45]);
- }
-
- function dot(a, b) {
- for (var i = 0, n = a.length, s = 0; i < n; ++i) s += a[i] * b[i];
- return s;
- }
-
- function cross(a, b) {
- return [
- a[1] * b[2] - a[2] * b[1],
- a[2] * b[0] - a[0] * b[2],
- a[0] * b[1] - a[1] * b[0]
- ];
- }
-
- // Converts 3D Cartesian to spherical coordinates (degrees).
- function spherical(cartesian) {
- return [
- atan2(cartesian[1], cartesian[0]) * degrees,
- asin(max(-1, min(1, cartesian[2]))) * degrees
- ];
- }
-
- // Converts spherical coordinates (degrees) to 3D Cartesian.
- function cartesian(coordinates) {
- var lambda = coordinates[0] * radians,
- phi = coordinates[1] * radians,
- cosphi = cos(phi);
- return [
- cosphi * cos(lambda),
- cosphi * sin(lambda),
- sin(phi)
- ];
- }
-
- var noop = () => {};
-
- function clockwise(ring) {
- if ((n = ring.length) < 4) return false;
- var i = 0,
- n,
- area = ring[n - 1][1] * ring[0][0] - ring[n - 1][0] * ring[0][1];
- while (++i < n) area += ring[i - 1][1] * ring[i][0] - ring[i - 1][0] * ring[i][1];
- return area <= 0;
- }
-
- function contains(ring, point) {
- var x = point[0],
- y = point[1],
- contains = false;
- for (var i = 0, n = ring.length, j = n - 1; i < n; j = i++) {
- var pi = ring[i], xi = pi[0], yi = pi[1],
- pj = ring[j], xj = pj[0], yj = pj[1];
- if (((yi > y) ^ (yj > y)) && (x < (xj - xi) * (y - yi) / (yj - yi) + xi)) contains = !contains;
- }
- return contains;
- }
-
- function index(object, projection) {
- var stream = projection.stream, project;
- if (!stream) throw new Error("invalid projection");
- switch (object && object.type) {
- case "Feature": project = projectFeature; break;
- case "FeatureCollection": project = projectFeatureCollection; break;
- default: project = projectGeometry; break;
- }
- return project(object, stream);
- }
-
- function projectFeatureCollection(o, stream) {
- return {
- type: "FeatureCollection",
- features: o.features.map(function(f) {
- return projectFeature(f, stream);
- })
- };
- }
-
- function projectFeature(o, stream) {
- return {
- type: "Feature",
- id: o.id,
- properties: o.properties,
- geometry: projectGeometry(o.geometry, stream)
- };
- }
-
- function projectGeometryCollection(o, stream) {
- return {
- type: "GeometryCollection",
- geometries: o.geometries.map(function(o) {
- return projectGeometry(o, stream);
- })
- };
- }
-
- function projectGeometry(o, stream) {
- if (!o) return null;
- if (o.type === "GeometryCollection") return projectGeometryCollection(o, stream);
- var sink;
- switch (o.type) {
- case "Point": sink = sinkPoint; break;
- case "MultiPoint": sink = sinkPoint; break;
- case "LineString": sink = sinkLine; break;
- case "MultiLineString": sink = sinkLine; break;
- case "Polygon": sink = sinkPolygon; break;
- case "MultiPolygon": sink = sinkPolygon; break;
- case "Sphere": sink = sinkPolygon; break;
- default: return null;
- }
- d3Geo.geoStream(o, stream(sink));
- return sink.result();
- }
-
- var points = [],
- lines = [];
-
- var sinkPoint = {
- point: function(x, y) {
- points.push([x, y]);
- },
- result: function() {
- var result = !points.length ? null
- : points.length < 2 ? {type: "Point", coordinates: points[0]}
- : {type: "MultiPoint", coordinates: points};
- points = [];
- return result;
- }
- };
-
- var sinkLine = {
- lineStart: noop,
- point: function(x, y) {
- points.push([x, y]);
- },
- lineEnd: function() {
- if (points.length) lines.push(points), points = [];
- },
- result: function() {
- var result = !lines.length ? null
- : lines.length < 2 ? {type: "LineString", coordinates: lines[0]}
- : {type: "MultiLineString", coordinates: lines};
- lines = [];
- return result;
- }
- };
-
- var sinkPolygon = {
- polygonStart: noop,
- lineStart: noop,
- point: function(x, y) {
- points.push([x, y]);
- },
- lineEnd: function() {
- var n = points.length;
- if (n) {
- do points.push(points[0].slice()); while (++n < 4);
- lines.push(points), points = [];
- }
- },
- polygonEnd: noop,
- result: function() {
- if (!lines.length) return null;
- var polygons = [],
- holes = [];
-
- // https://github.com/d3/d3/issues/1558
- lines.forEach(function(ring) {
- if (clockwise(ring)) polygons.push([ring]);
- else holes.push(ring);
- });
-
- holes.forEach(function(hole) {
- var point = hole[0];
- polygons.some(function(polygon) {
- if (contains(polygon[0], point)) {
- polygon.push(hole);
- return true;
- }
- }) || polygons.push([hole]);
- });
-
- lines = [];
-
- return !polygons.length ? null
- : polygons.length > 1 ? {type: "MultiPolygon", coordinates: polygons}
- : {type: "Polygon", coordinates: polygons[0]};
- }
- };
-
- function quincuncial(project) {
- var dx = project(halfPi, 0)[0] - project(-halfPi, 0)[0];
-
- function projectQuincuncial(lambda, phi) {
- var t = abs(lambda) < halfPi,
- p = project(t ? lambda : lambda > 0 ? lambda - pi : lambda + pi, phi),
- x = (p[0] - p[1]) * sqrt1_2,
- y = (p[0] + p[1]) * sqrt1_2;
- if (t) return [x, y];
- var d = dx * sqrt1_2,
- s = x > 0 ^ y > 0 ? -1 : 1;
- return [s * x - sign(y) * d, s * y - sign(x) * d];
- }
-
- if (project.invert) projectQuincuncial.invert = function(x0, y0) {
- var x = (x0 + y0) * sqrt1_2,
- y = (y0 - x0) * sqrt1_2,
- t = abs(x) < 0.5 * dx && abs(y) < 0.5 * dx;
-
- if (!t) {
- var d = dx * sqrt1_2,
- s = x > 0 ^ y > 0 ? -1 : 1,
- x1 = -s * x0 + (y > 0 ? 1 : -1) * d,
- y1 = -s * y0 + (x > 0 ? 1 : -1) * d;
- x = (-x1 - y1) * sqrt1_2;
- y = (x1 - y1) * sqrt1_2;
- }
-
- var p = project.invert(x, y);
- if (!t) p[0] += x > 0 ? pi : -pi;
- return p;
- };
-
- return d3Geo.geoProjection(projectQuincuncial)
- .rotate([-90, -90, 45])
- .clipAngle(180 - 1e-3);
- }
-
- function gringorten() {
- return quincuncial(gringortenRaw)
- .scale(176.423);
- }
-
- function peirce() {
- return quincuncial(guyouRaw)
- .scale(111.48);
- }
-
- function quantize$1(input, digits) {
- if (!(0 <= (digits = +digits) && digits <= 20)) throw new Error("invalid digits");
-
- function quantizePoint(input) {
- var n = input.length, i = 2, output = new Array(n);
- output[0] = +input[0].toFixed(digits);
- output[1] = +input[1].toFixed(digits);
- while (i < n) output[i] = input[i], ++i;
- return output;
- }
-
- function quantizePoints(input) {
- return input.map(quantizePoint);
- }
-
- function quantizePointsNoDuplicates(input) {
- var point0 = quantizePoint(input[0]);
- var output = [point0];
- for (var i = 1; i < input.length; i++) {
- var point = quantizePoint(input[i]);
- if (point.length > 2 || point[0] != point0[0] || point[1] != point0[1]) {
- output.push(point);
- point0 = point;
- }
- }
- if (output.length === 1 && input.length > 1) {
- output.push(quantizePoint(input[input.length - 1]));
- }
- return output;
- }
-
- function quantizePolygon(input) {
- return input.map(quantizePointsNoDuplicates);
- }
-
- function quantizeGeometry(input) {
- if (input == null) return input;
- var output;
- switch (input.type) {
- case "GeometryCollection": output = {type: "GeometryCollection", geometries: input.geometries.map(quantizeGeometry)}; break;
- case "Point": output = {type: "Point", coordinates: quantizePoint(input.coordinates)}; break;
- case "MultiPoint": output = {type: input.type, coordinates: quantizePoints(input.coordinates)}; break;
- case "LineString": output = {type: input.type, coordinates: quantizePointsNoDuplicates(input.coordinates)}; break;
- case "MultiLineString": case "Polygon": output = {type: input.type, coordinates: quantizePolygon(input.coordinates)}; break;
- case "MultiPolygon": output = {type: "MultiPolygon", coordinates: input.coordinates.map(quantizePolygon)}; break;
- default: return input;
- }
- if (input.bbox != null) output.bbox = input.bbox;
- return output;
- }
-
- function quantizeFeature(input) {
- var output = {type: "Feature", properties: input.properties, geometry: quantizeGeometry(input.geometry)};
- if (input.id != null) output.id = input.id;
- if (input.bbox != null) output.bbox = input.bbox;
- return output;
- }
-
- if (input != null) switch (input.type) {
- case "Feature": return quantizeFeature(input);
- case "FeatureCollection": {
- var output = {type: "FeatureCollection", features: input.features.map(quantizeFeature)};
- if (input.bbox != null) output.bbox = input.bbox;
- return output;
- }
- default: return quantizeGeometry(input);
- }
-
- return input;
- }
-
- function rectangularPolyconicRaw(phi0) {
- var sinPhi0 = sin(phi0);
-
- function forward(lambda, phi) {
- var A = sinPhi0 ? tan(lambda * sinPhi0 / 2) / sinPhi0 : lambda / 2;
- if (!phi) return [2 * A, -phi0];
- var E = 2 * atan(A * sin(phi)),
- cotPhi = 1 / tan(phi);
- return [
- sin(E) * cotPhi,
- phi + (1 - cos(E)) * cotPhi - phi0
- ];
- }
-
- // TODO return null for points outside outline.
- forward.invert = function(x, y) {
- if (abs(y += phi0) < epsilon$1) return [sinPhi0 ? 2 * atan(sinPhi0 * x / 2) / sinPhi0 : x, 0];
- var k = x * x + y * y,
- phi = 0,
- i = 10, delta;
- do {
- var tanPhi = tan(phi),
- secPhi = 1 / cos(phi),
- j = k - 2 * y * phi + phi * phi;
- phi -= delta = (tanPhi * j + 2 * (phi - y)) / (2 + j * secPhi * secPhi + 2 * (phi - y) * tanPhi);
- } while (abs(delta) > epsilon$1 && --i > 0);
- var E = x * (tanPhi = tan(phi)),
- A = tan(abs(y) < abs(phi + 1 / tanPhi) ? asin(E) * 0.5 : acos(E) * 0.5 + pi / 4) / sin(phi);
- return [
- sinPhi0 ? 2 * atan(sinPhi0 * A) / sinPhi0 : 2 * A,
- phi
- ];
- };
-
- return forward;
- }
-
- function rectangularPolyconic() {
- return parallel1(rectangularPolyconicRaw)
- .scale(131.215);
- }
-
- var K = [
- [0.9986, -0.062],
- [1.0000, 0.0000],
- [0.9986, 0.0620],
- [0.9954, 0.1240],
- [0.9900, 0.1860],
- [0.9822, 0.2480],
- [0.9730, 0.3100],
- [0.9600, 0.3720],
- [0.9427, 0.4340],
- [0.9216, 0.4958],
- [0.8962, 0.5571],
- [0.8679, 0.6176],
- [0.8350, 0.6769],
- [0.7986, 0.7346],
- [0.7597, 0.7903],
- [0.7186, 0.8435],
- [0.6732, 0.8936],
- [0.6213, 0.9394],
- [0.5722, 0.9761],
- [0.5322, 1.0000]
- ];
-
- K.forEach(function(d) {
- d[1] *= 1.593415793900743;
- });
-
- function robinsonRaw(lambda, phi) {
- var i = min(18, abs(phi) * 36 / pi),
- i0 = floor(i),
- di = i - i0,
- ax = (k = K[i0])[0],
- ay = k[1],
- bx = (k = K[++i0])[0],
- by = k[1],
- cx = (k = K[min(19, ++i0)])[0],
- cy = k[1],
- k;
- return [
- lambda * (bx + di * (cx - ax) / 2 + di * di * (cx - 2 * bx + ax) / 2),
- sign(phi) * (by + di * (cy - ay) / 2 + di * di * (cy - 2 * by + ay) / 2)
- ];
- }
-
- robinsonRaw.invert = function(x, y) {
- var phi = y * 90,
- i = min(18, abs(phi / 5)),
- i0 = max(0, floor(i));
- do {
- var ay = K[i0][1],
- by = K[i0 + 1][1],
- cy = K[min(19, i0 + 2)][1],
- u = cy - ay,
- v = cy - 2 * by + ay,
- t = 2 * (abs(y) - by) / u,
- c = v / u,
- di = t * (1 - c * t * (1 - 2 * c * t));
- if (di >= 0 || i0 === 1) {
- phi = (y >= 0 ? 5 : -5) * (di + i);
- var j = 50, delta;
- do {
- i = min(18, abs(phi) / 5);
- i0 = floor(i);
- di = i - i0;
- ay = K[i0][1];
- by = K[i0 + 1][1];
- cy = K[min(19, i0 + 2)][1];
- phi -= (delta = sign(y) * (by + di * (cy - ay) / 2 + di * di * (cy - 2 * by + ay) / 2) - y) * degrees;
- } while (abs(delta) > epsilon2 && --j > 0);
- break;
- }
- } while (--i0 >= 0);
- var ax = K[i0][0],
- bx = K[i0 + 1][0],
- cx = K[min(19, i0 + 2)][0];
- return [
- x / (bx + di * (cx - ax) / 2 + di * di * (cx - 2 * bx + ax) / 2),
- phi * radians
- ];
- };
-
- function robinson() {
- return d3Geo.geoProjection(robinsonRaw)
- .scale(152.63);
- }
-
- function satelliteVerticalRaw(P) {
- function forward(lambda, phi) {
- var cosPhi = cos(phi),
- k = (P - 1) / (P - cosPhi * cos(lambda));
- return [
- k * cosPhi * sin(lambda),
- k * sin(phi)
- ];
- }
-
- forward.invert = function(x, y) {
- var rho2 = x * x + y * y,
- rho = sqrt(rho2),
- sinc = (P - sqrt(1 - rho2 * (P + 1) / (P - 1))) / ((P - 1) / rho + rho / (P - 1));
- return [
- atan2(x * sinc, rho * sqrt(1 - sinc * sinc)),
- rho ? asin(y * sinc / rho) : 0
- ];
- };
-
- return forward;
- }
-
- function satelliteRaw(P, omega) {
- var vertical = satelliteVerticalRaw(P);
- if (!omega) return vertical;
- var cosOmega = cos(omega),
- sinOmega = sin(omega);
-
- function forward(lambda, phi) {
- var coordinates = vertical(lambda, phi),
- y = coordinates[1],
- A = y * sinOmega / (P - 1) + cosOmega;
- return [
- coordinates[0] * cosOmega / A,
- y / A
- ];
- }
-
- forward.invert = function(x, y) {
- var k = (P - 1) / (P - 1 - y * sinOmega);
- return vertical.invert(k * x, k * y * cosOmega);
- };
-
- return forward;
- }
-
- function satellite() {
- var distance = 2,
- omega = 0,
- m = d3Geo.geoProjectionMutator(satelliteRaw),
- p = m(distance, omega);
-
- // As a multiple of radius.
- p.distance = function(_) {
- if (!arguments.length) return distance;
- return m(distance = +_, omega);
- };
-
- p.tilt = function(_) {
- if (!arguments.length) return omega * degrees;
- return m(distance, omega = _ * radians);
- };
-
- return p
- .scale(432.147)
- .clipAngle(acos(1 / distance) * degrees - 1e-6);
- }
-
- var epsilon = 1e-4,
- epsilonInverse = 1e4,
- x0 = -180, x0e = x0 + epsilon,
- x1 = 180, x1e = x1 - epsilon,
- y0 = -90, y0e = y0 + epsilon,
- y1 = 90, y1e = y1 - epsilon;
-
- function nonempty(coordinates) {
- return coordinates.length > 0;
- }
-
- function quantize(x) {
- return Math.floor(x * epsilonInverse) / epsilonInverse;
- }
-
- function normalizePoint(y) {
- return y === y0 || y === y1 ? [0, y] : [x0, quantize(y)]; // pole or antimeridian?
- }
-
- function clampPoint(p) {
- var x = p[0], y = p[1], clamped = false;
- if (x <= x0e) x = x0, clamped = true;
- else if (x >= x1e) x = x1, clamped = true;
- if (y <= y0e) y = y0, clamped = true;
- else if (y >= y1e) y = y1, clamped = true;
- return clamped ? [x, y] : p;
- }
-
- function clampPoints(points) {
- return points.map(clampPoint);
- }
-
- // For each ring, detect where it crosses the antimeridian or pole.
- function extractFragments(rings, polygon, fragments) {
- for (var j = 0, m = rings.length; j < m; ++j) {
- var ring = rings[j].slice();
-
- // By default, assume that this ring doesn’t need any stitching.
- fragments.push({index: -1, polygon: polygon, ring: ring});
-
- for (var i = 0, n = ring.length; i < n; ++i) {
- var point = ring[i],
- x = point[0],
- y = point[1];
-
- // If this is an antimeridian or polar point…
- if (x <= x0e || x >= x1e || y <= y0e || y >= y1e) {
- ring[i] = clampPoint(point);
-
- // Advance through any antimeridian or polar points…
- for (var k = i + 1; k < n; ++k) {
- var pointk = ring[k],
- xk = pointk[0],
- yk = pointk[1];
- if (xk > x0e && xk < x1e && yk > y0e && yk < y1e) break;
- }
-
- // If this was just a single antimeridian or polar point,
- // we don’t need to cut this ring into a fragment;
- // we can just leave it as-is.
- if (k === i + 1) continue;
-
- // Otherwise, if this is not the first point in the ring,
- // cut the current fragment so that it ends at the current point.
- // The current point is also normalized for later joining.
- if (i) {
- var fragmentBefore = {index: -1, polygon: polygon, ring: ring.slice(0, i + 1)};
- fragmentBefore.ring[fragmentBefore.ring.length - 1] = normalizePoint(y);
- fragments[fragments.length - 1] = fragmentBefore;
- }
-
- // If the ring started with an antimeridian fragment,
- // we can ignore that fragment entirely.
- else fragments.pop();
-
- // If the remainder of the ring is an antimeridian fragment,
- // move on to the next ring.
- if (k >= n) break;
-
- // Otherwise, add the remaining ring fragment and continue.
- fragments.push({index: -1, polygon: polygon, ring: ring = ring.slice(k - 1)});
- ring[0] = normalizePoint(ring[0][1]);
- i = -1;
- n = ring.length;
- }
- }
- }
- }
-
- // Now stitch the fragments back together into rings.
- function stitchFragments(fragments) {
- var i, n = fragments.length;
-
- // To connect the fragments start-to-end, create a simple index by end.
- var fragmentByStart = {},
- fragmentByEnd = {},
- fragment,
- start,
- startFragment,
- end,
- endFragment;
-
- // For each fragment…
- for (i = 0; i < n; ++i) {
- fragment = fragments[i];
- start = fragment.ring[0];
- end = fragment.ring[fragment.ring.length - 1];
-
- // If this fragment is closed, add it as a standalone ring.
- if (start[0] === end[0] && start[1] === end[1]) {
- fragment.polygon.push(fragment.ring);
- fragments[i] = null;
- continue;
- }
-
- fragment.index = i;
- fragmentByStart[start] = fragmentByEnd[end] = fragment;
- }
-
- // For each open fragment…
- for (i = 0; i < n; ++i) {
- fragment = fragments[i];
- if (fragment) {
- start = fragment.ring[0];
- end = fragment.ring[fragment.ring.length - 1];
- startFragment = fragmentByEnd[start];
- endFragment = fragmentByStart[end];
-
- delete fragmentByStart[start];
- delete fragmentByEnd[end];
-
- // If this fragment is closed, add it as a standalone ring.
- if (start[0] === end[0] && start[1] === end[1]) {
- fragment.polygon.push(fragment.ring);
- continue;
- }
-
- if (startFragment) {
- delete fragmentByEnd[start];
- delete fragmentByStart[startFragment.ring[0]];
- startFragment.ring.pop(); // drop the shared coordinate
- fragments[startFragment.index] = null;
- fragment = {index: -1, polygon: startFragment.polygon, ring: startFragment.ring.concat(fragment.ring)};
-
- if (startFragment === endFragment) {
- // Connect both ends to this single fragment to create a ring.
- fragment.polygon.push(fragment.ring);
- } else {
- fragment.index = n++;
- fragments.push(fragmentByStart[fragment.ring[0]] = fragmentByEnd[fragment.ring[fragment.ring.length - 1]] = fragment);
- }
- } else if (endFragment) {
- delete fragmentByStart[end];
- delete fragmentByEnd[endFragment.ring[endFragment.ring.length - 1]];
- fragment.ring.pop(); // drop the shared coordinate
- fragment = {index: n++, polygon: endFragment.polygon, ring: fragment.ring.concat(endFragment.ring)};
- fragments[endFragment.index] = null;
- fragments.push(fragmentByStart[fragment.ring[0]] = fragmentByEnd[fragment.ring[fragment.ring.length - 1]] = fragment);
- } else {
- fragment.ring.push(fragment.ring[0]); // close ring
- fragment.polygon.push(fragment.ring);
- }
- }
- }
- }
-
- function stitchFeature(input) {
- var output = {type: "Feature", geometry: stitchGeometry(input.geometry)};
- if (input.id != null) output.id = input.id;
- if (input.bbox != null) output.bbox = input.bbox;
- if (input.properties != null) output.properties = input.properties;
- return output;
- }
-
- function stitchGeometry(input) {
- if (input == null) return input;
- var output, fragments, i, n;
- switch (input.type) {
- case "GeometryCollection": output = {type: "GeometryCollection", geometries: input.geometries.map(stitchGeometry)}; break;
- case "Point": output = {type: "Point", coordinates: clampPoint(input.coordinates)}; break;
- case "MultiPoint": case "LineString": output = {type: input.type, coordinates: clampPoints(input.coordinates)}; break;
- case "MultiLineString": output = {type: "MultiLineString", coordinates: input.coordinates.map(clampPoints)}; break;
- case "Polygon": {
- var polygon = [];
- extractFragments(input.coordinates, polygon, fragments = []);
- stitchFragments(fragments);
- output = {type: "Polygon", coordinates: polygon};
- break;
- }
- case "MultiPolygon": {
- fragments = [], i = -1, n = input.coordinates.length;
- var polygons = new Array(n);
- while (++i < n) extractFragments(input.coordinates[i], polygons[i] = [], fragments);
- stitchFragments(fragments);
- output = {type: "MultiPolygon", coordinates: polygons.filter(nonempty)};
- break;
- }
- default: return input;
- }
- if (input.bbox != null) output.bbox = input.bbox;
- return output;
- }
-
- function stitch(input) {
- if (input == null) return input;
- switch (input.type) {
- case "Feature": return stitchFeature(input);
- case "FeatureCollection": {
- var output = {type: "FeatureCollection", features: input.features.map(stitchFeature)};
- if (input.bbox != null) output.bbox = input.bbox;
- return output;
- }
- default: return stitchGeometry(input);
- }
- }
-
- function timesRaw(lambda, phi) {
- var t = tan(phi / 2),
- s = sin(quarterPi * t);
- return [
- lambda * (0.74482 - 0.34588 * s * s),
- 1.70711 * t
- ];
- }
-
- timesRaw.invert = function(x, y) {
- var t = y / 1.70711,
- s = sin(quarterPi * t);
- return [
- x / (0.74482 - 0.34588 * s * s),
- 2 * atan(t)
- ];
- };
-
- function times() {
- return d3Geo.geoProjection(timesRaw)
- .scale(146.153);
- }
-
- // Compute the origin as the midpoint of the two reference points.
- // Rotate one of the reference points by the origin.
- // Apply the spherical law of sines to compute gamma rotation.
- function twoPoint(raw, p0, p1) {
- var i = d3Geo.geoInterpolate(p0, p1),
- o = i(0.5),
- a = d3Geo.geoRotation([-o[0], -o[1]])(p0),
- b = i.distance / 2,
- y = -asin(sin(a[1] * radians) / sin(b)),
- R = [-o[0], -o[1], -(a[0] > 0 ? pi - y : y) * degrees],
- p = d3Geo.geoProjection(raw(b)).rotate(R),
- r = d3Geo.geoRotation(R),
- center = p.center;
-
- delete p.rotate;
-
- p.center = function(_) {
- return arguments.length ? center(r(_)) : r.invert(center());
- };
-
- return p
- .clipAngle(90);
- }
-
- function twoPointAzimuthalRaw(d) {
- var cosd = cos(d);
-
- function forward(lambda, phi) {
- var coordinates = d3Geo.geoGnomonicRaw(lambda, phi);
- coordinates[0] *= cosd;
- return coordinates;
- }
-
- forward.invert = function(x, y) {
- return d3Geo.geoGnomonicRaw.invert(x / cosd, y);
- };
-
- return forward;
- }
-
- function twoPointAzimuthalUsa() {
- return twoPointAzimuthal([-158, 21.5], [-77, 39])
- .clipAngle(60)
- .scale(400);
- }
-
- function twoPointAzimuthal(p0, p1) {
- return twoPoint(twoPointAzimuthalRaw, p0, p1);
- }
-
- function twoPointEquidistantRaw(z0) {
- if (!(z0 *= 2)) return d3Geo.geoAzimuthalEquidistantRaw;
- var lambdaa = -z0 / 2,
- lambdab = -lambdaa,
- z02 = z0 * z0,
- tanLambda0 = tan(lambdab),
- S = 0.5 / sin(lambdab);
-
- function forward(lambda, phi) {
- var za = acos(cos(phi) * cos(lambda - lambdaa)),
- zb = acos(cos(phi) * cos(lambda - lambdab)),
- ys = phi < 0 ? -1 : 1;
- za *= za, zb *= zb;
- return [
- (za - zb) / (2 * z0),
- ys * sqrt(4 * z02 * zb - (z02 - za + zb) * (z02 - za + zb)) / (2 * z0)
- ];
- }
-
- forward.invert = function(x, y) {
- var y2 = y * y,
- cosza = cos(sqrt(y2 + (t = x + lambdaa) * t)),
- coszb = cos(sqrt(y2 + (t = x + lambdab) * t)),
- t,
- d;
- return [
- atan2(d = cosza - coszb, t = (cosza + coszb) * tanLambda0),
- (y < 0 ? -1 : 1) * acos(sqrt(t * t + d * d) * S)
- ];
- };
-
- return forward;
- }
-
- function twoPointEquidistantUsa() {
- return twoPointEquidistant([-158, 21.5], [-77, 39])
- .clipAngle(130)
- .scale(122.571);
- }
-
- function twoPointEquidistant(p0, p1) {
- return twoPoint(twoPointEquidistantRaw, p0, p1);
- }
-
- function vanDerGrintenRaw(lambda, phi) {
- if (abs(phi) < epsilon$1) return [lambda, 0];
- var sinTheta = abs(phi / halfPi),
- theta = asin(sinTheta);
- if (abs(lambda) < epsilon$1 || abs(abs(phi) - halfPi) < epsilon$1) return [0, sign(phi) * pi * tan(theta / 2)];
- var cosTheta = cos(theta),
- A = abs(pi / lambda - lambda / pi) / 2,
- A2 = A * A,
- G = cosTheta / (sinTheta + cosTheta - 1),
- P = G * (2 / sinTheta - 1),
- P2 = P * P,
- P2_A2 = P2 + A2,
- G_P2 = G - P2,
- Q = A2 + G;
- return [
- sign(lambda) * pi * (A * G_P2 + sqrt(A2 * G_P2 * G_P2 - P2_A2 * (G * G - P2))) / P2_A2,
- sign(phi) * pi * (P * Q - A * sqrt((A2 + 1) * P2_A2 - Q * Q)) / P2_A2
- ];
- }
-
- vanDerGrintenRaw.invert = function(x, y) {
- if (abs(y) < epsilon$1) return [x, 0];
- if (abs(x) < epsilon$1) return [0, halfPi * sin(2 * atan(y / pi))];
- var x2 = (x /= pi) * x,
- y2 = (y /= pi) * y,
- x2_y2 = x2 + y2,
- z = x2_y2 * x2_y2,
- c1 = -abs(y) * (1 + x2_y2),
- c2 = c1 - 2 * y2 + x2,
- c3 = -2 * c1 + 1 + 2 * y2 + z,
- d = y2 / c3 + (2 * c2 * c2 * c2 / (c3 * c3 * c3) - 9 * c1 * c2 / (c3 * c3)) / 27,
- a1 = (c1 - c2 * c2 / (3 * c3)) / c3,
- m1 = 2 * sqrt(-a1 / 3),
- theta1 = acos(3 * d / (a1 * m1)) / 3;
- return [
- pi * (x2_y2 - 1 + sqrt(1 + 2 * (x2 - y2) + z)) / (2 * x),
- sign(y) * pi * (-m1 * cos(theta1 + pi / 3) - c2 / (3 * c3))
- ];
- };
-
- function vanDerGrinten() {
- return d3Geo.geoProjection(vanDerGrintenRaw)
- .scale(79.4183);
- }
-
- function vanDerGrinten2Raw(lambda, phi) {
- if (abs(phi) < epsilon$1) return [lambda, 0];
- var sinTheta = abs(phi / halfPi),
- theta = asin(sinTheta);
- if (abs(lambda) < epsilon$1 || abs(abs(phi) - halfPi) < epsilon$1) return [0, sign(phi) * pi * tan(theta / 2)];
- var cosTheta = cos(theta),
- A = abs(pi / lambda - lambda / pi) / 2,
- A2 = A * A,
- x1 = cosTheta * (sqrt(1 + A2) - A * cosTheta) / (1 + A2 * sinTheta * sinTheta);
- return [
- sign(lambda) * pi * x1,
- sign(phi) * pi * sqrt(1 - x1 * (2 * A + x1))
- ];
- }
-
- vanDerGrinten2Raw.invert = function(x, y) {
- if (!x) return [0, halfPi * sin(2 * atan(y / pi))];
- var x1 = abs(x / pi),
- A = (1 - x1 * x1 - (y /= pi) * y) / (2 * x1),
- A2 = A * A,
- B = sqrt(A2 + 1);
- return [
- sign(x) * pi * (B - A),
- sign(y) * halfPi * sin(2 * atan2(sqrt((1 - 2 * A * x1) * (A + B) - x1), sqrt(B + A + x1)))
- ];
- };
-
- function vanDerGrinten2() {
- return d3Geo.geoProjection(vanDerGrinten2Raw)
- .scale(79.4183);
- }
-
- function vanDerGrinten3Raw(lambda, phi) {
- if (abs(phi) < epsilon$1) return [lambda, 0];
- var sinTheta = phi / halfPi,
- theta = asin(sinTheta);
- if (abs(lambda) < epsilon$1 || abs(abs(phi) - halfPi) < epsilon$1) return [0, pi * tan(theta / 2)];
- var A = (pi / lambda - lambda / pi) / 2,
- y1 = sinTheta / (1 + cos(theta));
- return [
- pi * (sign(lambda) * sqrt(A * A + 1 - y1 * y1) - A),
- pi * y1
- ];
- }
-
- vanDerGrinten3Raw.invert = function(x, y) {
- if (!y) return [x, 0];
- var y1 = y / pi,
- A = (pi * pi * (1 - y1 * y1) - x * x) / (2 * pi * x);
- return [
- x ? pi * (sign(x) * sqrt(A * A + 1) - A) : 0,
- halfPi * sin(2 * atan(y1))
- ];
- };
-
- function vanDerGrinten3() {
- return d3Geo.geoProjection(vanDerGrinten3Raw)
- .scale(79.4183);
- }
-
- function vanDerGrinten4Raw(lambda, phi) {
- if (!phi) return [lambda, 0];
- var phi0 = abs(phi);
- if (!lambda || phi0 === halfPi) return [0, phi];
- var B = phi0 / halfPi,
- B2 = B * B,
- C = (8 * B - B2 * (B2 + 2) - 5) / (2 * B2 * (B - 1)),
- C2 = C * C,
- BC = B * C,
- B_C2 = B2 + C2 + 2 * BC,
- B_3C = B + 3 * C,
- lambda0 = lambda / halfPi,
- lambda1 = lambda0 + 1 / lambda0,
- D = sign(abs(lambda) - halfPi) * sqrt(lambda1 * lambda1 - 4),
- D2 = D * D,
- F = B_C2 * (B2 + C2 * D2 - 1) + (1 - B2) * (B2 * (B_3C * B_3C + 4 * C2) + 12 * BC * C2 + 4 * C2 * C2),
- x1 = (D * (B_C2 + C2 - 1) + 2 * sqrt(F)) / (4 * B_C2 + D2);
- return [
- sign(lambda) * halfPi * x1,
- sign(phi) * halfPi * sqrt(1 + D * abs(x1) - x1 * x1)
- ];
- }
-
- vanDerGrinten4Raw.invert = function(x, y) {
- var delta;
- if (!x || !y) return [x, y];
- var sy = sign(y);
- y = abs(y) / pi;
- var x1 = sign(x) * x / halfPi,
- D = (x1 * x1 - 1 + 4 * y * y) / abs(x1),
- D2 = D * D,
- B = y * (2 - (y > 0.5 ? min(y, abs(x)) : 0)),
- r = x * x + y * y,
- i = 50;
- do {
- var B2 = B * B,
- C = (8 * B - B2 * (B2 + 2) - 5) / (2 * B2 * (B - 1)),
- C_ = (3 * B - B2 * B - 10) / (2 * B2 * B),
- C2 = C * C,
- BC = B * C,
- B_C = B + C,
- B_C2 = B_C * B_C,
- B_3C = B + 3 * C,
- F = B_C2 * (B2 + C2 * D2 - 1) + (1 - B2) * (B2 * (B_3C * B_3C + 4 * C2) + C2 * (12 * BC + 4 * C2)),
- F_ = -2 * B_C * (4 * BC * C2 + (1 - 4 * B2 + 3 * B2 * B2) * (1 + C_) + C2 * (-6 + 14 * B2 - D2 + (-8 + 8 * B2 - 2 * D2) * C_) + BC * (-8 + 12 * B2 + (-10 + 10 * B2 - D2) * C_)),
- sqrtF = sqrt(F),
- f = D * (B_C2 + C2 - 1) + 2 * sqrtF - x1 * (4 * B_C2 + D2),
- f_ = D * (2 * C * C_ + 2 * B_C * (1 + C_)) + F_ / sqrtF - 8 * B_C * (D * (-1 + C2 + B_C2) + 2 * sqrtF) * (1 + C_) / (D2 + 4 * B_C2);
- B -= delta = f / f_;
- } while (delta * r * r > epsilon$1 && --i > 0);
- return [
- sign(x) * (sqrt(D * D + 4) + D) * pi / 4,
- sy * halfPi * B
- ];
- };
-
- function vanDerGrinten4() {
- return d3Geo.geoProjection(vanDerGrinten4Raw)
- .scale(127.16);
- }
-
- function wagnerFormula(cx, cy, m1, m2, n) {
- function forward(lambda, phi) {
- var s = m1 * sin(m2 * phi),
- c0 = sqrt(1 - s * s),
- c1 = sqrt(2 / (1 + c0 * cos(lambda *= n)));
- return [
- cx * c0 * c1 * sin(lambda),
- cy * s * c1
- ];
- }
-
- forward.invert = function(x, y) {
- var t1 = x / cx,
- t2 = y / cy,
- p = sqrt(t1 * t1 + t2 * t2),
- c = 2 * asin(p / 2);
- return [
- atan2(x * tan(c), cx * p) / n,
- p && asin(y * sin(c) / (cy * m1 * p)) / m2
- ];
- };
-
- return forward;
- }
-
- function wagnerRaw(poleline, parallels, inflation, ratio) {
- // 60 is always used as reference parallel
- var phi1 = pi / 3;
-
- // sanitizing the input values
- // poleline and parallels may approximate but never equal 0
- poleline = max(poleline, epsilon$1);
- parallels = max(parallels, epsilon$1);
- // poleline must be <= 90; parallels may approximate but never equal 180
- poleline = min(poleline, halfPi);
- parallels = min(parallels, pi - epsilon$1);
- // 0 <= inflation <= 99.999
- inflation = max(inflation, 0);
- inflation = min(inflation, 100 - epsilon$1);
- // ratio > 0.
- // sensible values, i.e. something that renders a map which still can be
- // recognized as world map, are e.g. 20 <= ratio <= 1000.
- ratio = max(ratio, epsilon$1);
-
- // convert values from boehm notation
- // areal inflation e.g. from 0 to 1 or 20 to 1.2:
- var vinflation = inflation/100 + 1;
- // axial ratio e.g. from 200 to 2:
- var vratio = ratio / 100;
- // the other ones are a bit more complicated...
- var m2 = acos(vinflation * cos(phi1)) / phi1,
- m1 = sin(poleline) / sin(m2 * halfPi),
- n = parallels / pi,
- k = sqrt(vratio * sin(poleline / 2) / sin(parallels / 2)),
- cx = k / sqrt(n * m1 * m2),
- cy = 1 / (k * sqrt(n * m1 * m2));
-
- return wagnerFormula(cx, cy, m1, m2, n);
- }
-
- function wagner() {
- // default values generate wagner8
- var poleline = 65 * radians,
- parallels = 60 * radians,
- inflation = 20,
- ratio = 200,
- mutate = d3Geo.geoProjectionMutator(wagnerRaw),
- projection = mutate(poleline, parallels, inflation, ratio);
-
- projection.poleline = function(_) {
- return arguments.length ? mutate(poleline = +_ * radians, parallels, inflation, ratio) : poleline * degrees;
- };
-
- projection.parallels = function(_) {
- return arguments.length ? mutate(poleline, parallels = +_ * radians, inflation, ratio) : parallels * degrees;
- };
- projection.inflation = function(_) {
- return arguments.length ? mutate(poleline, parallels, inflation = +_, ratio) : inflation;
- };
- projection.ratio = function(_) {
- return arguments.length ? mutate(poleline, parallels, inflation, ratio = +_) : ratio;
- };
-
- return projection
- .scale(163.775);
- }
-
- function wagner7() {
- return wagner()
- .poleline(65)
- .parallels(60)
- .inflation(0)
- .ratio(200)
- .scale(172.633);
- }
-
- var A = 4 * pi + 3 * sqrt(3),
- B = 2 * sqrt(2 * pi * sqrt(3) / A);
-
- var wagner4Raw = mollweideBromleyRaw(B * sqrt(3) / pi, B, A / 6);
-
- function wagner4() {
- return d3Geo.geoProjection(wagner4Raw)
- .scale(176.84);
- }
-
- function wagner6Raw(lambda, phi) {
- return [lambda * sqrt(1 - 3 * phi * phi / (pi * pi)), phi];
- }
-
- wagner6Raw.invert = function(x, y) {
- return [x / sqrt(1 - 3 * y * y / (pi * pi)), y];
- };
-
- function wagner6() {
- return d3Geo.geoProjection(wagner6Raw)
- .scale(152.63);
- }
-
- function wiechelRaw(lambda, phi) {
- var cosPhi = cos(phi),
- sinPhi = cos(lambda) * cosPhi,
- sin1_Phi = 1 - sinPhi,
- cosLambda = cos(lambda = atan2(sin(lambda) * cosPhi, -sin(phi))),
- sinLambda = sin(lambda);
- cosPhi = sqrt(1 - sinPhi * sinPhi);
- return [
- sinLambda * cosPhi - cosLambda * sin1_Phi,
- -cosLambda * cosPhi - sinLambda * sin1_Phi
- ];
- }
-
- wiechelRaw.invert = function(x, y) {
- var w = (x * x + y * y) / -2,
- k = sqrt(-w * (2 + w)),
- b = y * w + x * k,
- a = x * w - y * k,
- D = sqrt(a * a + b * b);
- return [
- atan2(k * b, D * (1 + w)),
- D ? -asin(k * a / D) : 0
- ];
- };
-
- function wiechel() {
- return d3Geo.geoProjection(wiechelRaw)
- .rotate([0, -90, 45])
- .scale(124.75)
- .clipAngle(180 - 1e-3);
- }
-
- function winkel3Raw(lambda, phi) {
- var coordinates = aitoffRaw(lambda, phi);
- return [
- (coordinates[0] + lambda / halfPi) / 2,
- (coordinates[1] + phi) / 2
- ];
- }
-
- winkel3Raw.invert = function(x, y) {
- var lambda = x, phi = y, i = 25;
- do {
- var cosphi = cos(phi),
- sinphi = sin(phi),
- sin_2phi = sin(2 * phi),
- sin2phi = sinphi * sinphi,
- cos2phi = cosphi * cosphi,
- sinlambda = sin(lambda),
- coslambda_2 = cos(lambda / 2),
- sinlambda_2 = sin(lambda / 2),
- sin2lambda_2 = sinlambda_2 * sinlambda_2,
- C = 1 - cos2phi * coslambda_2 * coslambda_2,
- E = C ? acos(cosphi * coslambda_2) * sqrt(F = 1 / C) : F = 0,
- F,
- fx = 0.5 * (2 * E * cosphi * sinlambda_2 + lambda / halfPi) - x,
- fy = 0.5 * (E * sinphi + phi) - y,
- dxdlambda = 0.5 * F * (cos2phi * sin2lambda_2 + E * cosphi * coslambda_2 * sin2phi) + 0.5 / halfPi,
- dxdphi = F * (sinlambda * sin_2phi / 4 - E * sinphi * sinlambda_2),
- dydlambda = 0.125 * F * (sin_2phi * sinlambda_2 - E * sinphi * cos2phi * sinlambda),
- dydphi = 0.5 * F * (sin2phi * coslambda_2 + E * sin2lambda_2 * cosphi) + 0.5,
- denominator = dxdphi * dydlambda - dydphi * dxdlambda,
- dlambda = (fy * dxdphi - fx * dydphi) / denominator,
- dphi = (fx * dydlambda - fy * dxdlambda) / denominator;
- lambda -= dlambda, phi -= dphi;
- } while ((abs(dlambda) > epsilon$1 || abs(dphi) > epsilon$1) && --i > 0);
- return [lambda, phi];
- };
-
- function winkel3() {
- return d3Geo.geoProjection(winkel3Raw)
- .scale(158.837);
- }
-
- exports.geoAiry = airy;
- exports.geoAiryRaw = airyRaw;
- exports.geoAitoff = aitoff;
- exports.geoAitoffRaw = aitoffRaw;
- exports.geoArmadillo = armadillo;
- exports.geoArmadilloRaw = armadilloRaw;
- exports.geoAugust = august;
- exports.geoAugustRaw = augustRaw;
- exports.geoBaker = baker;
- exports.geoBakerRaw = bakerRaw;
- exports.geoBerghaus = berghaus;
- exports.geoBerghausRaw = berghausRaw;
- exports.geoBertin1953 = bertin;
- exports.geoBertin1953Raw = bertin1953Raw;
- exports.geoBoggs = boggs$1;
- exports.geoBoggsRaw = boggsRaw;
- exports.geoBonne = bonne;
- exports.geoBonneRaw = bonneRaw;
- exports.geoBottomley = bottomley;
- exports.geoBottomleyRaw = bottomleyRaw;
- exports.geoBromley = bromley;
- exports.geoBromleyRaw = bromleyRaw;
- exports.geoChamberlin = chamberlin;
- exports.geoChamberlinAfrica = chamberlinAfrica;
- exports.geoChamberlinRaw = chamberlinRaw;
- exports.geoCollignon = collignon$1;
- exports.geoCollignonRaw = collignonRaw;
- exports.geoCraig = craig;
- exports.geoCraigRaw = craigRaw;
- exports.geoCraster = craster;
- exports.geoCrasterRaw = crasterRaw;
- exports.geoCylindricalEqualArea = cylindricalEqualArea;
- exports.geoCylindricalEqualAreaRaw = cylindricalEqualAreaRaw;
- exports.geoCylindricalStereographic = cylindricalStereographic;
- exports.geoCylindricalStereographicRaw = cylindricalStereographicRaw;
- exports.geoEckert1 = eckert1;
- exports.geoEckert1Raw = eckert1Raw;
- exports.geoEckert2 = eckert2;
- exports.geoEckert2Raw = eckert2Raw;
- exports.geoEckert3 = eckert3;
- exports.geoEckert3Raw = eckert3Raw;
- exports.geoEckert4 = eckert4;
- exports.geoEckert4Raw = eckert4Raw;
- exports.geoEckert5 = eckert5;
- exports.geoEckert5Raw = eckert5Raw;
- exports.geoEckert6 = eckert6;
- exports.geoEckert6Raw = eckert6Raw;
- exports.geoEisenlohr = eisenlohr;
- exports.geoEisenlohrRaw = eisenlohrRaw;
- exports.geoFahey = fahey;
- exports.geoFaheyRaw = faheyRaw;
- exports.geoFoucaut = foucaut;
- exports.geoFoucautRaw = foucautRaw;
- exports.geoFoucautSinusoidal = foucautSinusoidal;
- exports.geoFoucautSinusoidalRaw = foucautSinusoidalRaw;
- exports.geoGilbert = gilbert;
- exports.geoGingery = gingery;
- exports.geoGingeryRaw = gingeryRaw;
- exports.geoGinzburg4 = ginzburg4;
- exports.geoGinzburg4Raw = ginzburg4Raw;
- exports.geoGinzburg5 = ginzburg5;
- exports.geoGinzburg5Raw = ginzburg5Raw;
- exports.geoGinzburg6 = ginzburg6;
- exports.geoGinzburg6Raw = ginzburg6Raw;
- exports.geoGinzburg8 = ginzburg8;
- exports.geoGinzburg8Raw = ginzburg8Raw;
- exports.geoGinzburg9 = ginzburg9;
- exports.geoGinzburg9Raw = ginzburg9Raw;
- exports.geoGringorten = gringorten$1;
- exports.geoGringortenQuincuncial = gringorten;
- exports.geoGringortenRaw = gringortenRaw;
- exports.geoGuyou = guyou;
- exports.geoGuyouRaw = guyouRaw;
- exports.geoHammer = hammer;
- exports.geoHammerRaw = hammerRaw;
- exports.geoHammerRetroazimuthal = hammerRetroazimuthal;
- exports.geoHammerRetroazimuthalRaw = hammerRetroazimuthalRaw;
- exports.geoHealpix = healpix;
- exports.geoHealpixRaw = healpixRaw;
- exports.geoHill = hill;
- exports.geoHillRaw = hillRaw;
- exports.geoHomolosine = homolosine$1;
- exports.geoHomolosineRaw = homolosineRaw;
- exports.geoHufnagel = hufnagel;
- exports.geoHufnagelRaw = hufnagelRaw;
- exports.geoHyperelliptical = hyperelliptical;
- exports.geoHyperellipticalRaw = hyperellipticalRaw;
- exports.geoInterrupt = interrupt;
- exports.geoInterruptedBoggs = boggs;
- exports.geoInterruptedHomolosine = homolosine;
- exports.geoInterruptedMollweide = mollweide;
- exports.geoInterruptedMollweideHemispheres = mollweideHemispheres;
- exports.geoInterruptedQuarticAuthalic = quarticAuthalic;
- exports.geoInterruptedSinuMollweide = sinuMollweide;
- exports.geoInterruptedSinusoidal = sinusoidal;
- exports.geoKavrayskiy7 = kavrayskiy7;
- exports.geoKavrayskiy7Raw = kavrayskiy7Raw;
- exports.geoLagrange = lagrange;
- exports.geoLagrangeRaw = lagrangeRaw;
- exports.geoLarrivee = larrivee;
- exports.geoLarriveeRaw = larriveeRaw;
- exports.geoLaskowski = laskowski;
- exports.geoLaskowskiRaw = laskowskiRaw;
- exports.geoLittrow = littrow;
- exports.geoLittrowRaw = littrowRaw;
- exports.geoLoximuthal = loximuthal;
- exports.geoLoximuthalRaw = loximuthalRaw;
- exports.geoMiller = miller$1;
- exports.geoMillerRaw = millerRaw;
- exports.geoModifiedStereographic = modifiedStereographic;
- exports.geoModifiedStereographicAlaska = modifiedStereographicAlaska;
- exports.geoModifiedStereographicGs48 = modifiedStereographicGs48;
- exports.geoModifiedStereographicGs50 = modifiedStereographicGs50;
- exports.geoModifiedStereographicLee = modifiedStereographicLee;
- exports.geoModifiedStereographicMiller = modifiedStereographicMiller;
- exports.geoModifiedStereographicRaw = modifiedStereographicRaw;
- exports.geoMollweide = mollweide$1;
- exports.geoMollweideRaw = mollweideRaw;
- exports.geoMtFlatPolarParabolic = mtFlatPolarParabolic;
- exports.geoMtFlatPolarParabolicRaw = mtFlatPolarParabolicRaw;
- exports.geoMtFlatPolarQuartic = mtFlatPolarQuartic;
- exports.geoMtFlatPolarQuarticRaw = mtFlatPolarQuarticRaw;
- exports.geoMtFlatPolarSinusoidal = mtFlatPolarSinusoidal;
- exports.geoMtFlatPolarSinusoidalRaw = mtFlatPolarSinusoidalRaw;
- exports.geoNaturalEarth2 = naturalEarth2;
- exports.geoNaturalEarth2Raw = naturalEarth2Raw;
- exports.geoNellHammer = nellHammer;
- exports.geoNellHammerRaw = nellHammerRaw;
- exports.geoNicolosi = nicolosi;
- exports.geoNicolosiRaw = nicolosiRaw;
- exports.geoPatterson = patterson;
- exports.geoPattersonRaw = pattersonRaw;
- exports.geoPeirceQuincuncial = peirce;
- exports.geoPolyconic = polyconic;
- exports.geoPolyconicRaw = polyconicRaw;
- exports.geoPolyhedral = polyhedral;
- exports.geoPolyhedralButterfly = butterfly;
- exports.geoPolyhedralCollignon = collignon;
- exports.geoPolyhedralWaterman = waterman;
- exports.geoProject = index;
- exports.geoQuantize = quantize$1;
- exports.geoQuincuncial = quincuncial;
- exports.geoRectangularPolyconic = rectangularPolyconic;
- exports.geoRectangularPolyconicRaw = rectangularPolyconicRaw;
- exports.geoRobinson = robinson;
- exports.geoRobinsonRaw = robinsonRaw;
- exports.geoSatellite = satellite;
- exports.geoSatelliteRaw = satelliteRaw;
- exports.geoSinuMollweide = sinuMollweide$1;
- exports.geoSinuMollweideRaw = sinuMollweideRaw;
- exports.geoSinusoidal = sinusoidal$1;
- exports.geoSinusoidalRaw = sinusoidalRaw;
- exports.geoStitch = stitch;
- exports.geoTimes = times;
- exports.geoTimesRaw = timesRaw;
- exports.geoTwoPointAzimuthal = twoPointAzimuthal;
- exports.geoTwoPointAzimuthalRaw = twoPointAzimuthalRaw;
- exports.geoTwoPointAzimuthalUsa = twoPointAzimuthalUsa;
- exports.geoTwoPointEquidistant = twoPointEquidistant;
- exports.geoTwoPointEquidistantRaw = twoPointEquidistantRaw;
- exports.geoTwoPointEquidistantUsa = twoPointEquidistantUsa;
- exports.geoVanDerGrinten = vanDerGrinten;
- exports.geoVanDerGrinten2 = vanDerGrinten2;
- exports.geoVanDerGrinten2Raw = vanDerGrinten2Raw;
- exports.geoVanDerGrinten3 = vanDerGrinten3;
- exports.geoVanDerGrinten3Raw = vanDerGrinten3Raw;
- exports.geoVanDerGrinten4 = vanDerGrinten4;
- exports.geoVanDerGrinten4Raw = vanDerGrinten4Raw;
- exports.geoVanDerGrintenRaw = vanDerGrintenRaw;
- exports.geoWagner = wagner;
- exports.geoWagner4 = wagner4;
- exports.geoWagner4Raw = wagner4Raw;
- exports.geoWagner6 = wagner6;
- exports.geoWagner6Raw = wagner6Raw;
- exports.geoWagner7 = wagner7;
- exports.geoWagnerRaw = wagnerRaw;
- exports.geoWiechel = wiechel;
- exports.geoWiechelRaw = wiechelRaw;
- exports.geoWinkel3 = winkel3;
- exports.geoWinkel3Raw = winkel3Raw;
-
- Object.defineProperty(exports, '__esModule', { value: true });
-
- })));
|