|
- 'use strict';
-
- /**
- * Convert a series of points to a monotone cubic spline
- * Algorithm based on https://github.com/mbostock/d3
- * https://github.com/yr/monotone-cubic-spline
- * @copyright Yr
- * @license MIT
- */
-
- var ε = 1e-6;
-
- module.exports = {
- /**
- * Convert 'points' to bezier
- * @param {Array} points
- * @returns {Array}
- */
- points: function points(_points) {
- var tgts = tangents(_points);
-
- var p = _points[1];
- var p0 = _points[0];
- var pts = [];
- var t = tgts[1];
- var t0 = tgts[0];
-
- // Add starting 'M' and 'C' points
- pts.push(p0, [p0[0] + t0[0], p0[1] + t0[1], p[0] - t[0], p[1] - t[1], p[0], p[1]]);
-
- // Add 'S' points
- for (var i = 2, n = tgts.length; i < n; i++) {
- var _p = _points[i];
- var _t = tgts[i];
-
- pts.push([_p[0] - _t[0], _p[1] - _t[1], _p[0], _p[1]]);
- }
-
- return pts;
- },
-
-
- /**
- * Slice out a segment of 'points'
- * @param {Array} points
- * @param {Number} start
- * @param {Number} end
- * @returns {Array}
- */
- slice: function slice(points, start, end) {
- var pts = points.slice(start, end);
-
- if (start) {
- // Add additional 'C' points
- if (pts[1].length < 6) {
- var n = pts[0].length;
-
- pts[1] = [pts[0][n - 2] * 2 - pts[0][n - 4], pts[0][n - 1] * 2 - pts[0][n - 3]].concat(pts[1]);
- }
- // Remove control points for 'M'
- pts[0] = pts[0].slice(-2);
- }
-
- return pts;
- },
-
-
- /**
- * Convert 'points' to svg path
- * @param {Array} points
- * @returns {String}
- */
- svgPath: function svgPath(points) {
- var p = '';
-
- for (var i = 0; i < points.length; i++) {
- var point = points[i];
- var n = point.length;
-
- if (!i) {
- p += 'M' + point[n - 2] + ' ' + point[n - 1];
- } else if (n > 4) {
- p += 'C' + point[0] + ', ' + point[1];
- p += ', ' + point[2] + ', ' + point[3];
- p += ', ' + point[4] + ', ' + point[5];
- } else {
- p += 'S' + point[0] + ', ' + point[1];
- p += ', ' + point[2] + ', ' + point[3];
- }
- }
-
- return p;
- }
- };
-
- /**
- * Generate tangents for 'points'
- * @param {Array} points
- * @returns {Array}
- */
- function tangents(points) {
- var m = finiteDifferences(points);
- var n = points.length - 1;
-
- var tgts = [];
- var a = void 0,
- b = void 0,
- d = void 0,
- s = void 0;
-
- for (var i = 0; i < n; i++) {
- d = slope(points[i], points[i + 1]);
-
- if (Math.abs(d) < ε) {
- m[i] = m[i + 1] = 0;
- } else {
- a = m[i] / d;
- b = m[i + 1] / d;
- s = a * a + b * b;
- if (s > 9) {
- s = d * 3 / Math.sqrt(s);
- m[i] = s * a;
- m[i + 1] = s * b;
- }
- }
- }
-
- for (var _i = 0; _i <= n; _i++) {
- s = (points[Math.min(n, _i + 1)][0] - points[Math.max(0, _i - 1)][0]) / (6 * (1 + m[_i] * m[_i]));
- tgts.push([s || 0, m[_i] * s || 0]);
- }
-
- return tgts;
- }
-
- /**
- * Compute slope from point 'p0' to 'p1'
- * @param {Array} p0
- * @param {Array} p1
- * @returns {Number}
- */
- function slope(p0, p1) {
- return (p1[1] - p0[1]) / (p1[0] - p0[0]);
- }
-
- /**
- * Compute three-point differences for 'points'
- * @param {Array} points
- * @returns {Array}
- */
- function finiteDifferences(points) {
- var m = [];
- var p0 = points[0];
- var p1 = points[1];
- var d = m[0] = slope(p0, p1);
- var i = 1;
-
- for (var n = points.length - 1; i < n; i++) {
- p0 = p1;
- p1 = points[i + 1];
- m[i] = (d + (d = slope(p0, p1))) * 0.5;
- }
- m[i] = d;
-
- return m;
- }
|